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a b s t r a c t

Speckle is the dominant source of noise in ultrasound imaging and is a kind of multiplicative noise. It is

difficult to design a filter to remove speckle effectively. In this paper, a novel fuzzy subpixel fractional

partial difference (FSFPD) for ultrasound speckle reduction is proposed. Euler–Lagrange equation acts as

an increasing function of the fractional derivative’s absolute value of the image intensity function. The

fractional order partial difference is computed in the frequency and fuzzy domain with subpixel

precision. We test the proposed method on both synthetic and real breast ultrasound (BUS) images. The

comparisons of the experimental results show that the proposed method can preserve edges and

structural details of ultrasound images well while removing speckle noise. In addition, the filtered

images are assessed and evaluated by radiologists using double blind method. The results demonstrate

that the discrimination rate of breast cancers has been highly improved after employing the proposed

method.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Ultrasound (US) imaging is popularly used for diagnosis in
recent years due to its advantages such as no-radiation,
portability and low cost [1–3]. However, it suffers from two
major drawbacks: low-contrast and speckle noise [4–5]. Speckle is
inherent in US images, and is modeled as spatially correlated
multiplicative noise which satisfies non-Rayleigh distribution [6].
It is a granular pattern generated by constructive and destructive
coherent interference of backscattered echo from the scatterers
which are much smaller than the spatial resolution of medical
ultrasound systems [7–8]. Speckle often carries some useful
information. However, speckle is a dominant factor affecting the
contrast and resolution of US images, and is often considered as
noise which should be filtered out without losing the features of
the image [9]. Furthermore, speckle reduction is an important
preprocessing step for segmentation and classification.

In the last three decades, a considerable effort has been made
to develop the filters which can remove speckle while preserve
the features of US images. Lee [10–11] and Frost [12] are the local

statistic filters which achieve a balance between homogeneous
regions and non-homogeneous regions. Heavy filtering is applied
to the homogeneous regions to remove noise while light one is
applied to the non-homogeneous regions to preserve the edges or
other features. Kuan [13–14] is a generalization of Lee filter. An
optimal detector of lines in fully developed speckle was derived
using a generalized likelihood radio test (GLRT) [15]. A set of
directional line-matched masks were used to extract the local
data along different directions. It described optimal and sub-
optimal approaches for detecting lines and boundaries from the
images with speckle noise. However, the optimal detectors are
computationally expensive, and the suboptimal detectors of linear
and quadratic order are discussed. Some methods based on
wavelet were developed to retain nonstationary signals from
noise [16–18]. A robust wavelet method for noise filtering was
proposed [16]. The method employed a preliminary detection of
the wavelet coefficients representing the features of interest. Then
it empirically estimated the probability density function of noise-
free wavelet coefficients.

Recently, anisotropic diffusion methods have been studied as a
useful tool for image noise removal. Anisotropic diffusion
techniques were originally used for the generation of scale spaces
[19]. Anisotropic diffusion is a nonlinear filtering method, which
encourages diffusion in the homogeneous region whilst inhibiting
diffusion at edges. In particular, anisotropic diffusion is often
formulated in terms of a partial differential equation (PDE) which
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is discretized for handling digital images. Different discretization
schemes may result in algorithms with different filter kernels
[20]. A reference [21] proposed an edge-sensitive diffusion called
speckle reducing anisotropic diffusion (SRAD). SRAD can preserve
the edges by inhibiting diffusion across edges and allowing
diffusion on either side of each edge.

However, most of existing speckle reduction techniques
cannot truly and effectively enhance the edges. Actually, they
only prevent smoothing near the edges [9]. Contrast enhancement
is also difficult to implement for despeckle filters since speckle
is usually described as non-Rayleigh distribution [22,23], and
contrast enhancement often comes at the cost of resolution
impairment [24].

In this paper, we present a novel anisotropic diffusion method,
fuzzy subpixel fractional partial difference (FSFPD) method, for
speckle reduction. Euler–Lagrange equation is used as an increas-
ing function of the fractional derivative’s absolute value of the
image intensity function.

The paper is organized as follows. In Section 2, we review the
fractional-order anisotropic diffusion. In Section 3, we introduce
the proposed FSFPD algorithm. Section 4 compares the proposed
approach with some published speckle reduction methods
utilizing both synthetic and real ultrasound images. Finally, the
conclusions are summarized in Section 5.

2. Fractional order anisotropic diffusion

Anisotropic diffusion is associated with an energy-dissipating
process to seek the minimum of an energy function. The
advantages of anisotropic diffusion include intra-region smooth-
ing and edge preservation. For illustration purpose, the partial
differential equation (PDE) of anisotropic diffusion is discussed in
continuous domain first [19]. Let I denote the image, t the time,
and cð�Þ the diffusion coefficient, then the anisotropic diffusion is
formulated as

@I

@t
¼ divðcðjrIjÞrIÞ ð1Þ

where r indicates the gradient operator with respect to the space
variables, div is the divergence operator, and cðjrIjÞ is the
diffusion coefficient.

Eq. (1) is associated with the energy functional to measure the
oscillations in the image. According to the anisotropic diffusion
theory, the energy function can be defined with different formulas
[25]. Let I0 be the observation of I with additive noise Z. Noise is
superimposed on the image and the resulting image is repre-
sented by I0 ¼ IþZ. For instance, [26] proposed the functional
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Z
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where O is the image support, and ‘ðIÞ is an elliptic operator. The
above functional is too complex and it costs more computing
time, [11] proposed two different functionals to measure the
oscillations in a noisy image
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The major difference between the above two functionals is that
E2ðIÞ is rotational invariant but E1ðIÞ is not. Another functional was
described [27]:

EðIÞ ¼

Z
O

f ðjrIjÞdO ð4Þ

where f ð�ÞZ0 is an increasing function associated with the
diffusion coefficient:

cðsÞ ¼ f 0ð

ffiffi
s
p
Þffiffi
s
p ð5Þ

In this paper, an energy function is defined over a support of O [28]:

EðIÞ ¼

Z
O

f ðjDaIjÞdO ð6Þ

where DaI¼ ðDaxI;DayIÞ and jDaIj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
axIþD2

ayI
q

. The integer order

a of the derivative can be generalized to a real number [29], and Da
is a fractional order derivative operator.

Euler–Lagrange equation can be constructed to seek the
minimum of the energy function. For any function xAC1ðOÞ, a
cost function fðlÞ is defined as

FðlÞ ¼
Z
O

f ðjDaIþlDaxjÞdx dy ð7Þ

where l is a positive weight parameter. Then

dFð0Þ
dl
¼

d
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O
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For all xAC1ðOÞ, D�ax and D�ay denote the Hermitian adjoints of
operators Dax and Day, respectively. According to the property
that, if A� is the Hermitian adjoint of A, then /Ax; yS¼/x;A�yS,
therefore, Eq. (8) can be rewritten as

dFð0Þ
dl
¼

Z
O
ðD�axcðjDaIj2ÞDaxIÞxdx dyþ

Z
O
ðD�aycðjDaIj2ÞDayIÞxdx dy

ð9Þ

Thus, the Euler–Lagrange equation is

D�axðcðjDaIj2ÞDaxIÞþD�ayðcðjDaIj2ÞDayIÞ ¼ 0 ð10Þ

The Euler–Lagrange equation can be solved through the following
gradient descent procedure:

@I

@t
¼�D�axðcðjDaIj2ÞDaxIÞ�D�ayðcðjDaIj2ÞDayIÞ ð11Þ

An important property of the fractional derivative is that, if
FðwÞ is the Fourier transform of f ðtÞ, then the Fourier transform of
the ath order derivative Daf ðtÞ is computed by ðjwÞaFðwÞ. For any
function f ðtÞALðRÞ, its Fourier transform is

FðwÞ ¼

Z
R

f ðtÞexpð�jwtÞdt ð12Þ

For any f ðx; yÞAL2ðR2Þ, the 2-D Fourier transform is

Fðw1;w2Þ ¼

Z
R2

f ðx; yÞexpð�jðw1xþw2yÞÞdx dy ð13Þ

Fractional order partial derivative can be defined as [28]

Daxf ¼ F�1ðð1�expð�j2pw1=MÞÞa � expðjpaw1=MÞFðw1;w2ÞÞ ð14Þ

D�axf2conjðð1�expð�j2pw1=MÞÞa � expðjpaw1=MÞÞFðw1;w2Þ ð15Þ

where F�1 denotes the inverse 2-D Fourier transform operator,
and f is the continuously interpolated version of image I whose
size is M�M. Similarly, Dayf and D�ayf can be derived.

3. Proposed approach

The behavior of the above anisotropic diffusion approach is
still dependent on the shape of the energy surface [30]. The
anisotropic diffusion approach bears some fuzziness due to the
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