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ABSTRACT

The problem of clustering with side information has received much recent attention and metric
learning has been considered as a powerful approach to this problem. Until now, various metric
learning methods have been proposed for semi-supervised clustering. Although some of the existing
methods can use both positive (must-link) and negative (cannot-link) constraints, they are usually
limited to learning a linear transformation (i.e., finding a global Mahalanobis metric). In this paper, we
propose a framework for learning linear and non-linear transformations efficiently. We use both
positive and negative constraints and also the intrinsic topological structure of data. We formulate our
metric learning method as an appropriate optimization problem and find the global optimum of this
problem. The proposed non-linear method can be considered as an efficient kernel learning method that
yields an explicit non-linear transformation and thus shows out-of-sample generalization ability.
Experimental results on synthetic and real-world data sets show the effectiveness of our metric
learning method for semi-supervised clustering tasks.
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1. Introduction

Distance metrics are a key issue in many machine learning
algorithms [1]. Over the past few years, there has been consider-
able research on distance metric learning [2]. Many of the earlier
studies optimize the metric with class labels for classification
tasks [3-8]. More recently, researchers have given much attention
to distance learning for semi-supervised clustering tasks. As class
label information is not generally available for clustering tasks,
constraints are used as more natural supervisory information
for these tasks. Pairwise similarity (positive) and dissimilarity
(negative) constraints are the most popular kind of side informa-
tion that has been used for semi-supervised clustering. However,
other kinds of side information like relative comparisons have
also been considered in some studies.

Over the last few years, the problem of clustering with
side information (semi-supervised clustering) has received
increasing attention [9,10] and distance learning has been
considered as a powerful approach for this problem. The two
most frequently used approaches that include side information
in the clustering algorithms are constraint-based [11-21] and
distance function learning [22-34] approaches [24]. In the former
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approach, the clustering algorithm itself is modified to use the
available labels or constraints to bias the search for an appropriate
data clustering. However, in the latter approach, the algorithm
learns a distance function prior to clustering. The learned distance
function tries to put similar points close together and dissimilar
points far away from each other. This approach is more flexible in
the choice of distance function [33]. Additionally, it has received
considerable attention in recent studies [1,25,28-31,33,34] and
we also use this approach.

Distance learning based on constraints has been studied by
many researchers [22-34]. Klein et al. [22] introduced a metric
adaptation method for semi-supervised clustering. This method
finds a distance measure according to the shortest path in a
version of the similarity graph that has been altered by positive
constraints. However, negative constraints have been employed
after the metric adaptation phase during the complete-link
clustering. Some latter studies [1,23,25,28,34] have considered a
more popular approach that learns a global Mahalanobis metric
from pairwise constraints. Xing et al. [23] proposed a convex
optimization problem to learn a global Mahalanobis metric
according to pairwise constraints. Bar-Hillel et al. [25] devised a
more efficient, non-iterative algorithm called relevant component
analysis  (RCA) for learning a Mahalanobis metric.
This method can only incorporate positive constraints. An
extension of the RCA method that can consider both positive
and negative constraints has also been introduced by Yeung and
Chang [28].
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More recently, some non-linear metric learning methods for
semi-supervised clustering have been introduced. Chang and
Yeung [29] proposed a locally linear metric learning method that
considers only positive constraints. The objective function of this
method has many local optima and the topology cannot be
preserved well during this approach [30]. Chang and Yeung [31]
proposed also a metric adaptation method. This method adjusts
the location of data points iteratively, so that similar points tend
to get closer and dissimilar points tend to move away from each
other. As this method lacks an explicit transformation map, it
cannot project new data points onto the transformed space
straightforwardly [31]. Additionally, the movement of data points
in this method may interfuse the structure of the data. In [30], two
kernel-based metric learning methods have been presented that
do have some limitations [30]. These kernel-based methods can
use only positive constraints.

Among the existing metric learning methods, some of them
[1,23,28,34,39,40] can incorporate both positive and negative
constraints. However, most of these methods [1,23,28,34] learn
only a linear transformation that corresponds to a Mahalanobis
metric. Although some recent studies [39,40] have been intro-
duced for kernel learning from positive and negative constraints,
they are based on learning non-parametric kernel matrices. These
methods can only find distances of the seen data. Additionally, the
optimization problems in these methods are usually difficult to
solve [40] and the degree of freedom of the corresponding models
is very high (i.e., n> where n denotes the number of data points).
In this paper, we propose an efficient non-linear metric learning
method that considers both positive and negative constraints
and also the topological structure of the data. We formulate the
proposed method as a constrained trace ratio optimization
problem that can be solved efficiently using algorithms intro-
duced for this purpose (e.g., Xiang et al.'s method [1]). The
proposed non-linear method can be considered as an efficient
kernel learning method that does not need to learn all items of an
n x n matrix. Our method yields an explicit transformation that
can project new data points onto the transformed space.

The rest of this paper is organized as follows: Section 2
presents a brief review of related works. In Section 3, first the
general form of the proposed optimization problems that
incorporate both positive and negative constraints and also the
topological structure of the data is introduced. Then, we present
special problems that can be solved efficiently for learning linear
and non-linear transformations. Finally, we present a kernel-
based method and show the relation between the proposed non-
linear method and a special form of this kernel-based method.
Section 4 presents some experimental results on synthetic and
real-world data sets. Concluding remarks are given in the last
section.

2. Related works

In this section, we review those methods that can consider
both positive and negative constraints to learn a transformation.
A positive constraint denotes a pair of data points that must be in
the same cluster while a negative constraint denotes two data
points that must be in two different clusters [1]. Most of the
existing methods that can use both positive and negative con-
straints learn a Mahalanobis metric A (where A is a positive semi-
definite matrix) or, equivalently, find a transformation matrix W
(y=W'x). Learning the transformation matrix W can yield the
Mahalanobis metric A = WWT according to:

ly;—y;1? = x;—x;)"WW' (x;—X;)
= (X —X) AX;—X;)) = |IX;—X;lI3. 1)

Xing et al. introduced the first metric learning method using
both positive and negative constraints [23]. They presented the
following objective function:

min Z IX;—X;113,
(X;,Xj) € P

st > X=Xl =1,

(X;.xj) € D

A>0, )

where P is the set of positive constraints and D is the set of
negative constraints. Xing et al. [23] used the gradient descent
and the idea of iterative projection to solve this problem.
Although the above optimization problem is convex, it is a hard
problem to solve and the introduced solution in [23] is slow and
somewhat unstable [25].

Chang et al. [28] introduced an extended version of the
RCA [25] method. They proposed the transformation matrix
W=(S;)""%(Sw)!/?> where S, denotes the inter-class (cluster)
covariance matrix computed from negative constraints and S,,
shows the intra-class (cluster) covariance matrix computed from
positive constraints. Although this transformation can be found
easily, the singularity problem may occur during the calculation
of S,,!/2. Additionally, it has not been obtained as a solution of an
optimization problem.

Hoi et al. [34] proposed the discriminative component analysis
(DCA) method using the ratio of determinants as the objective
function:

-
W* =arg maxilw Ebwl ) €)
w o Wic, Wi

where C, shows the covariance between data of discriminative

chunklets (cannot-links) and EW shows the total covariance of
data within the same chunklet (must-links) [34]. This problem

can be solved analytically by the eigenvalue decomposition of
C, C, [1]. However, _t1he singularity problem may occur during
the calculation of C, [34]. To avoid the singularity problem,

DCA diagonalizes the covariance matrices C, and C,, simultane-
ously and discards the eigenvectors corresponding to the zero
eigenvalue [1].

Recently, Xiang et al. [1] introduced the trace ratio objective
function (with the constraint W'W=I) as a more appropriate
objective function:

T
W* = arg maxM (4)

ww—1 tr(W'S, W)’

where S,, is the covariance matrix computed from positive
constraints and S, is the covariance matrix obtained from negative
constraints. The constraint W'W=I has been introduced to avoid
degenerate solutions [1]. The optimization problem in (4) is similar
to the problem introduced by Guo et al. [35] as the generalized
Foley-Sammon transform (GFST). It seeks a transformation matrix in
the global sense instead of learning individual transformation
vectors for different dimensions like Fisher criterion. To solve the
above optimization problem, Xiang et al. [1] have developed an
iterative method exploring the optimum in way of binary search.
Additionally, they have found a lower bound and an upper bound
including the optimum to speed up the search. Their proposed
method provides a heuristic search to solve the problem presented
in (4) [1]. In this paper, we propose a generalized form of the
objective function presented in (4) that can learn a non-linear
transformation and also considers the topological structure of data.
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