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a b s t r a c t

This paper presents a novel, simple, yet powerful and robust method for rotation invariant texture

classification. Like the Local Binary Patterns (LBP), the proposed method considers at each pixel a

neighboring function defined on a circle of radius R. We define local frequency components as the

magnitude of the coefficients of the 1D Fourier transform of the neighboring function. By applying

different bandpass filters on the 2D Fourier transform of the local frequency components, we define our

Local Frequency Descriptors (LFD). The LFD features are added dynamically from low frequencies

to high. The features defined in this paper are invariant to rotation. As well, they are robust to noise. The

experimental results on the Outex, CUReT, and KTH-TIPS datasets show that the proposed method

outperforms state-of-the-art texture analysis methods. The results also show that the proposed method

is very robust to noise.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Texture classification is an important topic in image proces-
sing and has been used in many applications including automated
inspection, image retrieval and medical image analysis. Image
textures are defined as visual patterns appearing in images.
Texture classification methods use chromatic and structural
characteristics of images to characterize textures. The methods
usually consist of four steps:

1. Pre-processing: The images are normalized in this step. The
purpose of normalization is standardizing the intensity range,
such that the extracted properties from the images are
comparable.

2. Feature extraction: Textural features of images are extracted in
this step. Different methods are used to find the textural
features (e.g., statistical information, frequency analysis, etc.).

3. Feature selection: In this step, useful features are selected.
Sometimes the number of features is huge. As well, some
features may not be informative. The goal of this step is to
reduce the number of extracted features by selecting those
giving important textural information.

4. Classification: In this step, each image is assigned to one of the
known texture classes. Basically, there are two sets: a training

set and a test set. Classification is performed to assign images
in the test set to one of the texture classes learned from the
training set. Different classification methods can be used in
this step. Some examples are support vector machines (SVMs),
and nearest neighbor (NN) classifiers.

All methods referred to as texture analysis methods are used
in the second step to extract textural features. The contribution of
this paper is to present a new method for texture feature
extraction based on the local frequencies in images. The proposed
method provides features that are (1) invariant to rotation,
(2) robust to noise, and (3) few in number.

In the next sections, this paper reviews relevant previous
works (Section 2), presents our method (Section 3), explains the
experimental results (Section 4), and concludes in Section 5.

2. Related works

There are many different methods for texture analysis; how-
ever, they can be categorized into four general groups. The first
group uses statistical features. The main motivation behind these
methods is based on the fact that the human visual system uses
statistical features to distinguish textures. The co-occurrence
matrix proposed by Haralick and Shanmugam [1] is one of the
first known methods using this approach. The co-occurrence
matrix represents the relationship between intensity levels for
a given direction and distance in the image. More recently, the
co-occurrence matrices have been extended to basic gray level
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Aura matrices by Qin and Yang [2,3]. The Run Length Matrices
(RLM) [4,5] method defines a gray level run as consecutive pixels
of the same gray level in a given direction, and the length of the
runs is used to describe textures. There are other statistical
methods such as using higher order statistics [6,7] and invariant
moments of the images [8,9]. Recently, Local Binary Patterns (LBP)
proposed by Ojala et al. [10] has been recognized as one of the
most successful statistical methods and has been extended by
different research groups [11–17]. The method represents the
relationship of each pixel and its neighbors (located on a circle
around the pixel) by a binary pattern and uses the histogram of
these patterns for texture classification. LBP suffers from two
major issues. First, the number of patterns increases exponen-
tially with respect to the number of neighbors. Second, LBP and its
variants are not robust to noise.

The second group of texture analysis methods uses structural
features of images. These methods decompose textures into
elements known as primitives or texels. The primitives and their
spatial arrangements are used to characterize textures. For
example, morphological operations are used to characterize
textures [18]. Song’s method [19] decomposes textures into a
set of scale images, finds square texels of the same size at each
scale, and uses the histogram of the texels as texture features. The
method proposed by Gui et al. [20] extracts the size, position,
periodicity, and spatial organization of texels to analyze textures.
Khellah’s method [21] uses the similarity between pixels and
their surrounding neighbors within a predefined window and
generates a global map called the dominant neighborhood struc-
ture. The features extracted from this map along with the features
obtained from the LBP are used for texture classification. The key
problem of the structural based methods is how to define texels
that represent different texture structures. In general, the
structural-based methods are better suited for textures with large
structures (macrostructure) and do not work well on stochastic
textures and microtextures [22].

The third class of texture methods defines textures as prob-
ability models. Some well-known models are Markov random
field (MRF) [23,24], auto-regressive (AR) model [25,26], and Gibbs
random field [27]. The key issue in these models is how to choose
the correct model for a given texture and how to effectively map a
texture into the selected probability model [22]. In addition, each
model imposes some assumptions that may not be true for all
textures. For instance, MRF assumes that the probability of each
pixel depends only on its neighbors which may not be correct for
all textures.

The fourth and last approach to analyze textures applies filters
on images in either spatial or frequency domain. For instance,
windowed Fourier filters are proposed by Azencott et al. [28] for
texture classification. Gabor wavelet features are proposed by
Manjunath and Ma [29]. The work of Chang and Kuo [30] employs
tree-structured wavelet transform on textures to extract features.
Rotation invariant textural features are extracted using Radon and
translation-invariant wavelet transforms in the method proposed
by Jafari-Khouzani and Soltanian-Zadeh [31]. The work of Chu and
Chan [32] applies tunable Gabor filter banks to define rotation
and scale invariant features. The method proposed by Haley and
Manjunath [33] makes use of circular Gabor filters for texture
classification. The main advantage of these methods that use
frequency components is the capability of handling noise. How-
ever, the mentioned methods cannot capture local changes in
textures. As a result some research studies use spatial domain to
define textural features. The methods of Leung and Malik [34],
Cula and Dana [35], and Varma and Zisserman [36] apply spatial
filters to the textures, and use the histogram of cluster centers of
the filter responses as features. Later, Varma and Zisserman [37]
replace the filter responses with the local patches of the original

image. Nonetheless, the spatial filter methods are not able to
handle noise like their counterparts that use frequency informa-
tion. Some methods use local frequencies of samples around
pixels to capture the local changes. A popular approach is by
taking the 1D Fourier transform on samples on a circle (or
multiple circles) around pixels [38–40]. Any rotation makes a
circular shift on the circular samples, keeping the magnitude of
the frequency unchanged. The method of Arof and Deravi [38]
uses two concentric circles around a pixel. The magnitude of the
1D Fourier transform of the samples and the difference of the
samples with the center pixel are computed as features. A similar
approach is used by Deng and Clausi [39] to construct anisotropic
circular Gaussian MRF (ACGMRF) model. The method considers N

concentric circular neighbors around a pixel and finds the para-
meters of the MRF using least squares estimation (LSE). Finally, it
computes the magnitude of the 1D Fourier transform of the
parameters to achieve rotation invariance. Recently, Liao and
Chung [40] have proposed the composite Fourier domain (CFD)
method. Considering samples located on three concentric circles
around each pixel, the method computes the magnitude of the 1D
Fourier transform on each circle. Then a global multidimensional
Fourier transform is applied to form the composite Fourier
domain. The null-space based linear discriminant analysis (nLDA)
is used to construct the final features.

Our proposed method is inspired by the above discussed local
Fourier analysis methods. We observed that none of these
methods takes advantage of the local frequencies to make noise
robust features. The development of such features is the main
motivation and contribution of this paper. Among the mentioned
methods, our method is similar to the CFD method of Liao and
Chung [40]. We first take the 1D Fourier transform of the samples
located on a circle around pixels. However, unlike CFD, we only
use the low frequency components (not all). We observed that the
low frequency components carry the major energy of the 1D
signals. On the other hand, the high frequency components carry
information that is very sensitive to noise. Therefore, by using the
low frequency components, we not only reduce the number of
frequency channels but also avoid the noise sensitive information.
Similar to CFD, we use a 2D Fourier transform on the local
frequency components. However, instead of using nLDA, we apply
rotation invariant bandpass filters which provide noise robust
features. In addition to the mentioned differences, a small image
needs considerable space when transformed into the composite
Fourier domain. As a result, the memory complexity of CFD makes
the approach impractical for many applications. However, our
proposed method does not require an excessive amount of
memory which makes it practical for many applications.

3. The proposed method

Since the sampling method in our approach (as well as in some
other works [38–40]) is similar to that in the LBP, we explain the
relationship between our method and the LBP and compare the
proposed method with the LBP and its variants. A brief overview
of the LBP method and its variants is given in Section 3.1. The
proposed method is introduced in Section 3.2. The implementa-
tion details are given in Section 3.3.

3.1. LBP and its variants

Traditionally, LBP considers N points on a circle with radius R

at center pixel, tc. These N points (t0, t1, . . . ,tN�1) are the neigh-
bors of the center pixel and their gray level values are determined
by interpolation if they are not located at the center of pixels.
Fig. 1 shows three popular configurations with radius of one, two,
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