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a b s t r a c t

We propose a comprehensive method for segmenting the retinal vasculature in fundus camera images.

Our method does not require preprocessing and training and can therefore be used directly on different

images sets. We enhance the vessels using matched filtering with multiwavelet kernels (MFMK),

separating vessels from clutter and bright, localized features. Noise removal and vessel localization are

achieved by a multiscale hierarchical decomposition of the normalized enhanced image. We show a

necessary condition to achieve the optimal decomposition and derive the associated value of the scale

parameter controlling the amount of details captured. Finally, we obtain a binary map of the

vasculature by locally adaptive thresholding, generating a threshold surface based on the vessel edge

information extracted by the previous processes. We report experimental results on two public retinal

data sets, DRIVE and STARE, demonstrating an excellent performance in comparison with retinal vessel

segmentation methods reported recently.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

We propose a novel, general method for segmenting the retinal
vasculature in fundus camera images.

Locating the retinal vasculature, assessing its morphological
properties and detecting abnormalities play an important role for
various purposes. These include, among others, diabetic screening
[1] and the detection of lesions associated with diabetes, e.g.,
diabetic retinopathy [2,3], retinopathy of prematurity [4,5], and
cerebrovascular diseases [6]. For such diagnostic purposes, auto-
matic or semi-automatic image analysis holds important promises.
First, rich, quantitative sets of measurements providing clinicians
with extensive information extracted from images and supporting
accurate diagnosis. Second, repeatable measurements which could
contribute to reduce the variability of medical diagnosis [7]. Third,
identifying and summarizing key information in the large quan-
tities of data present in retinal exams. For instance, fundus cameras
acquire nowadays high-resolution images [8].

On the non-diagnostic side, much work has been reported on
the discovery of biomarkers associated with the retinal vascula-
ture and a variety of conditions, e.g., stroke [9] and hypertension
[10]. Typical candidate biomarkers are related to vessel calibre,

branching angles and branching coefficients, vessel tortuosity
and, less frequently, the fractal dimension of the vasculature
network [2,9]. In cognitive psychology, retinal biomarkers have
recently been correlated with cognitive decline [11].

For image analysis, detecting the retinal vasculature means, in
essence, generating a binary mask in which pixels are labeled as
vessel or background. The target is to capture as much detail
(small vessels) as possible, simultaneously avoiding false posi-
tives and, ideally, preserving vessel connectivity. However, it
should be noted that many clinical investigations do not use fine
vessels, taking measurements only on major ones in a limited
region around the optic disc [12,6,11]. This may of course depend
on the current absence of reliable detectors of fine vessels. The
relevant literature is discussed in Section 2.

This paper brings the following contributions:

1. We introduce a novel vessel enhancement technique based on
the matched filters with multiwavelet kernels (MFMK).
We identify kernels separating vessels from clutter edges
and bright, localized features (e.g., lesions).

2. For noise attenuation and vessel localization, we apply a
multiscale hierarchical decomposition [13,40], which is parti-
cularly effective for the normalized enhanced image. This
process performs an iterative segmentation at increasing image
resolutions, locating smaller and smaller vessels. A single scale
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parameter controls the level of detail included in the vessel
map. We show a necessary condition to achieve the optimal
decomposition, deriving a rule to identify the optimal number
of the hierarchical decomposition.

3. Our method does not require preprocessing and training it can
therefore be used directly on images with different character-
istics. In addition, it relies on adaptive thresholding so that
no numerical parameter is tuned manually to obtain a binary
mask.

The image segmentation we obtain from the iterative multi-
resolution analysis is a gray-scale image. To achieve a binary map,
we adopt the spatially adaptive thresholding method [15], which
computes a threshold surface over the image. The main idea is to
use zero-crossings points as interpolation constraints for the
target threshold surface. The interpolating problem is solved by
minimizing an energy functional. In this way no threshold value
must be tuned by hand.

We report experimental results on two standard retinal data
sets, DRIVE and STARE, demonstrating excellent performance in
comparison with retinal vessel segmentation methods reported
recently.

The remainder of this paper is organized as follows. Section 2
summarizes the state-of-the-art automatic retinal vasculature
detection. Section 3 presents our algorithm. Section 4 reports
and discusses our experimental results. Section 5 summarizes the
paper and offers some conclusive remarks.

2. Related work

Retinal vessel detection systems can be discussed along
several dimensions. Here, we consider briefly filters, tracking,
supervised learning, and cross-sectional intensity models. This
section builds on our discussion of the literature in [16].

Filters. Matched filters for retinal vessel segmentation appear
in early works. For instance, in [17] the gray-level profile of the
cross-section of a blood vessel is approximated by a Gaussian
curve. Vessel segments are searched in all possible directions
using a two-dimensional matched filter. Hoover et al. [18] noticed
that a single global threshold applied to the filter’s output does
not yield a satisfactory classification, and propose a vessel
segmentation method that uses local and region-based properties
at each pixel. Pixels are classified as vessel or non-vessel by
thresholding the image generated by a matched filter using a
probing technique. Probing allows a pixel to be tested in multiple
region configurations before the final classification. Mendonca
and Campilho [19] detected the retinal vascular network auto-
matically by first extracting vessel centerlines using differential
filters and then applying morphological operators for filling vessel
segments. Mathematical morphology and curvature evaluation
are used also by Zana and Klein [20] for the detection of vessel-
like patterns. Soares et al. [21] adopt Gabor wavelets as they
provide directional selectivity and fine tuning to specific frequen-
cies, enabling noise reduction. In our system, we choose a system
of wavelets providing the same properties, and additionally
accounting for the different cross-sectional intensity profiles

Fig. 1. Example of central reflection. (a) Excerpt from fundus image, showing vein (marked 18) and artery (marked 19). (b) Intensity profile across vein, taken along black

line is shown. (c) Same for artery, showing central reflection.
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