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a b s t r a c t

Principal Component Analysis (PCA) is one of the well-known linear dimensionality reduction

techniques in the literature. Large computational requirements of PCA and its insensitivity to ‘local’

variations in patterns motivated to propose partitional based PCA approaches. It is also observed that

these partitioning methods are incapable of extracting ‘global’ information in patterns thus showing

lower dimensionality reduction. To alleviate the problems faced by PCA and the partitioning based PCA

methods, SubXPCA was proposed to extract principal components with global and local information. In

this paper, we prove analytically that (i) SubXPCA shows its computational efficiency up to a factor of k

(kZ2) as compared to PCA and competitive to an existing partitioning based PCA method (SubPCA),

(ii) SubXPCA shows much lower classification time as compared to SubPCA method, (iii) SubXPCA and

SubPCA outperform PCA by a factor up to k (kZ2) in terms of space complexity. The effectiveness of

SubXPCA is demonstrated upon a UCI data set and ORL face data.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Principal Component Analysis (PCA) is one of the widely used
methods for dimensionality reduction. Its applications include
multi-modal biometric systems [1], web page watermarking [2],
vehicle traffic monitoring [3], face recognition [4], image proces-
sing [5], to name a few. The PCA method is concerned with
summarizing the variance–covariance structure using a few linear
combinations of the original set of d features [6]. PCA is an
optimal linear dimensionality reduction scheme in terms of mean
squared error (MSE). However, PCA suffers from a large time
complexity [OðN � d2

Þ, where N is the number of training patterns,
d is the dimensionality of patterns] to compute the covariance
matrix. Many approaches such as neural network based PCA
methods [7], 2DPCA based methods [8] show reduced computa-
tional complexity as compared to PCA method. However, these
methods are based on whole-patterns, which are suitable for
global feature extraction like PCA, and they do not extract local
features if local variations are prominent [9]. It is known that
PCA performs global feature extraction that retains information
based upon covariances between every pair of original features.
However, global features are ineffective when variations are con-
fined to subpatterns (i.e. local variations). For example, a smile is

a local variation confined to a sub-region in a face and is
distributed over several patterns.

To overcome the difficulties with global feature extraction
methods, Feature Partitioning based PCA (FP-PCA) methods (Block
based methods) were proposed which exploit the local variations
within subpatterns with improved computational efficiency. The
FP-PCA methods are based on the principle of partitioning a

pattern into subpatterns and extract principal components (PCs)
from these subpatterns. However, these FP-PCA methods do not
exhibit good summarization of variance like PCA. Some of the
FP-PCA methods include SubPCA [10], Modular PCA [11], Eigen-
regions [12]. Recently, block based idea was extended to kernel
PCA methods [13] and Liang et al. [15] showed that FP-PCA
methods have larger reconstruction error as compared to PCA
methods [14]. To overcome the problems faced by the FP-PCA and
PCA methods, SubXPCA [9] was proposed. SubXPCA exploits the
merits of FP-PCA methods (that is, local feature extraction and
computational efficiency), and merits of PCA methods (that is,
global feature extraction and good summarization of variance).

We observed that there is no detailed analytical study on space
utilization and computational analysis of the existing FP-PCA
methods in comparison to PCA. Space and Computational com-
plexities are vital parameters to assess the merit of a technique
which is used in data intensive applications such as data mining
in particular. Here, we would like to bring out the space and
time complexity related properties of SubXPCA, SubPCA, and
PCA methods. A comparison is also made with another FP-PCA
method, SubPCA [10], upon ORL Face data, and UCI Musk data
sets.
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In the following, Section 2 reviews the major FP-PCA methods
and their time and space complexities are discussed in Section 3.
The computational and space complexity properties of SubXPCA
are investigated in Section 4. Experimental results are presented
in Section 5 and concluding remarks are given in Section 6.

2. An overview of SubXPCA and SubPCA methods

In this section, we review two feature partitioning based PCA
methods, SubXPCA [9] and SubPCA [10], in brief so that the
properties presented in Section 4 can be clearly understood.

2.1. Cross-subpattern correlation based PCA (SubXPCA) method

We shall use the notation as described below. The set, X, of
given patterns is denoted by using a matrix, ½X�N�d ¼

½X1X2 . . . . . .XN�
T , where N is the cardinality of X. Each pattern,

Xi, is a feature vector of dimension d, that is, ½Xi�d�1 ¼

½xi1xi2 . . . xid�
T where xi1,xi2, . . . ,xid are the feature values that

represent Xi. ½C�d�d is the covariance matrix of patterns, ½X�N�d.
We represent by k as the number of subpatterns, u as the
subpattern size, and r as the number of local features (local PCs).

1. Partitioning step: Divide every d-dimensional pattern,
Xi ði¼ 1,2, . . . ,NÞ into k (Z2) equally-sized subpatterns, X1

i ,X2
i ,

. . . ,Xk
i . Each subpattern is of size u, where u¼ bd=kc. For a

given pattern, Xi, the jth subpattern, Xj
i, is given by ½Xj

i�u�1 ¼

½xil xiðlþ1Þ . . . xiðlþu�1Þ�
T , where l¼ ðj�1Þ � uþ1, 1r jrk.

2. Grouping step: We pick-up jth subpattern corresponding to
every pattern, Xi; i¼ 1,2, . . . ,N, and form jth subpattern group
(partition), Pj, which is given by the matrix, ½Pj

�N�u ¼

½Xj
1Xj

2 . . .X
j
N�

T . Let ½X
j
�u�1 be the mean of N subpatterns, ½Pj

�N�u.
Let Pj

M be the mean-subtracted version of Pj.
3. Local feature extraction step: For every subpattern group,

Pj, where j¼ 1,2, . . . ,k, repeat the following steps (a)–(d):
(a) Compute local covariance matrix, [Cj

�u�u. (b) Compute eigen-
values (lj

p) and eigenvectors (ej
pÞ, where p¼ 1,2, . . . ,u, of Cj.

(c) Select r (ou) local eigenvectors corresponding to the first r

largest eigenvalues obtained in the preceding step. Let ½Ej
�u�r be

the matrix of r local eigenvectors selected in this step. (d) Extract r

local features (local PCs) by projecting Pj
M onto Ej.

4. Combining locally extracted features step: (a) Form
locally-reduced pattern, Yi by concatenating locally-reduced sub-
patterns, ½Yj

i�r�1, 8j¼ 1,2, . . . ,k, as shown by ½Yi�k�r�1 ¼ ½½Y
1
i �

T ,½Y2
i �

T ,
. . . . . . ,½Yk

i �
T �T and Yj

i is the locally-reduced form of subpattern, Xj
i.

Let ½Y�N�k�r ¼ ½Y1Y2, . . .YN �
T denotes the matrix of locally-reduced

patterns. (b) Perform global feature extraction using cross-sub-
pattern covariances of Y, obtained in the preceding step:
(i) Compute global covariance matrix, ½Cg

�ðk�rÞ�ðk�rÞ for the data Y.
(ii) Compute eigenvalues (ls) and eigenvectors (es) of Cg , where
s¼ 1,2, . . . ,ðk � rÞ. (iii) Select w (ok � r) eigenvectors corresponding
to first w largest eigenvalues obtained in the preceding step. Let
½Eg
� be the matrix of w eigenvectors selected in this step. (iv)

Extract w global PCs by projecting Y onto Eg . Let Z be the
data obtained after projection in this step, then, ½Z�N�w ¼

½Y�N�k�r � ½E
g
�k�r�w. The reduced data, Z, is used for subsequent

tasks such as classification.

2.2. Subpattern based PCA (SubPCA) method

The SubPCA [10] method is constituted by following the Steps
1–3 and Step-4(a) of SubXPCA method given in Section 2.1.
The SubPCA extracts local features (local PCs) which yield
locally-reduced subpatterns, ðYj

iÞr�1, 8j¼ 1,2, . . . ,k as given in the
preceding Section 2.1.

3. Computational time and space complexities of PCA,
SubPCA, and SubXPCA methods

In this section, we present time and space complexities of PCA,
SubPCA, and SubXPCA, which will be used subsequently in
Section 4.

3.1. Time complexities for feature extraction

The time complexity for feature extraction of PCA method
(which includes computation of covariance matrix (OðN � d2

Þ),
eigenvectors/eigenvalues (Oðd3

Þ), etc.) is given by

TC ¼OðN � d2
þd3
Þ ð1Þ

On the similar lines, the time complexity for feature extraction of
SubPCA method with k subpatterns of size u is given by

TS ¼ O½k � ðN � u2þu3Þ� ð2Þ

Now, we focus on computing the time complexity of SubXPCA,
TF, which is the sum of (i) time complexity of processing all k

subpatterns (same as SubPCA) (Steps 1–3 of Section 2.1) and (ii)
time complexity of extracting features using inter-subpattern
correlations (Step-4 of Section 2.1). The time complexity for
feature extraction of SubXPCA, TF, is given by

TF ¼ TSþO½N � ðk � rÞ2þðk � rÞ3� ð3Þ

3.2. Time complexities for classification based on

nearest neighbour (NN) rule

Here we find nearest neighbour (NN) of each of the given M

test patterns from the N training patterns used for computing PCs.
It is known that NN rule takes OðN �wÞ time for finding a nearest
neighbour of a test pattern from N patterns with w PCs. Therefore,
the time complexity for NN based classification of M test patterns
with w PCs obtained by PCA method, TCC, is given by

TCC ¼OðM � N �wÞ ð4Þ

We know that SubPCA (Section 2.2) extracts k � r local PCs (r from
each of the k subpatterns). The time complexity for NN based
classification of M test patterns with k � r PCs obtained by SubPCA
method, TCS, is given by

TCS ¼OðM � N � k � rÞ ð5Þ

From Section 2.1, we know that SubXPCA extracts wðok � rÞ

global PCs from k � r local PCs. The time complexity for NN based
classification of M test patterns with w PCs obtained by SubXPCA,
TCF, is given by

TCF ¼ OðM � N �wÞ ð6Þ

3.3. Space complexities of PCA, SubPCA and SubXPCA methods

The space complexities to store (i) ½X�N�d, the patterns,
(ii) covariance matrix of size d� d, (iii) eigenvalues and eigen-
vectors, and (iv) local PCs, ½Y�N�w are given as OðN � dÞ,Oðd2

Þ,
Oðd2
Þ,OðN �wÞ respectively. Thus, the space complexity of PCA

method is given by

SC ¼OðN � dþd2
Þ ð7Þ

We know that SubPCA computes local PCs by storing a single

partition of subpatterns (½Pj
�N�u) at any point of time. On the

similar lines of PCA, the space complexity of SubPCA method with
subpatterns of size u is given by

SS ¼OðN � uþu2Þ ð8Þ
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