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a b s t r a c t

The recently proposed twin parametric-margin support vector machine, denoted by TPMSVM, gains

good generalization and is suitable for many noise cases. However, in the TPMSVM, it solves two dual

quadratic programming problems (QPPs). Moreover, compared with support vector machine (SVM),

TPMSVM has at least four regularization parameters that need regulating, which affects its practical

applications. In this paper, we increase the efficiency of TPMSVM from two aspects. First, by

introducing a quadratic function, we directly optimize a pair of QPPs of TPMSVM in the primal space,

called STPMSVM for short. Compared with solving two dual QPPs in the TPMSVM, STPMSVM can

obviously improve the training speed without loss of generalization. Second, a genetic algorithm

GA-based model selection for STPMSVM in the primal space is suggested. The GA-based STPMSVM can

not only select the parameters efficiently, but also provide discriminative feature selection. Computa-

tional results on several synthetic as well as benchmark datasets confirm the great improvements on

the training process of our GA-based STPMSVM.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Support vector machine (SVM), being computationally power-
ful tools for supervised learning [1–3], has already outperformed
most other systems in a wide variety of applications [4–7]. For the
standard SVM, its primal problem can be understood in the
following way: constructs two parallel supporting hyperplanes
such that, on the one hand, the band between the two parallel
hyperplanes separates the two classes (the positive and negative
data points) well; on the other hand, the width of the band is
maximized, leading to a quadratic programming problem (QPP).
The final separating hyperlane is selected to be the ‘‘mid-one’’
between the two supporting hyperplanes after solving the QPP.

Different from SVM with two parallel hyperplanes, some
nonparallel hyperplane classifiers such as generalized eigenvalue
proximal support vector machine (GEPSVM), twin support vector
machine (TWSVM) and twin parametric margin support vector
machine (TPMSVM) were proposed in [8–10], respectively. Simi-
lar to GEPSVM, TWSVM [9,11] seeks two nonparallel proximal
hyperplanes such that each hyperplane is closest to one of two
classes and has a certain distance far from the other. Further,
TPMSVM [10] was proposed in the spirit of TWSVM. Different

from the TWSVM, TPMSVM seeks two nonparallel parametric-
margin hyperplanes such that each hyperplane is as far as
possible away from one side of one of two classes. A fundamental
difference between TPMSVM and SVM is that, TPMSVM solves
two smaller size QPPs, whereas SVM solves a large one. Therefore,
TPMSVM works faster than SVM. Experimental results in [10]
showed the effectiveness of TPMSVM over both standard SVM
and TWSVM on several public available datasets. Thus, the
methods of constructing the nonparallel hyperplanes have been
studied extensively [12–17].

Compared with SVM, TPMSVM [10] owns better generalization
and is suitable for many cases for it obtains a pair of nonparallel
parametric-margin hyperplanes. The training process of TPMSVM
involves the solution of two QPPs. Its computational complexity
still approximately equal to 1=4 Oðm3Þ, where m is the total
number of training data points. Though computing results show
that TPMSVM is faster than SVM by solving dual QPPs using
standard QP solvers, there exist several much faster decomposi-
tion methods to solve SVM (e.g., SMO [18,19]). Hence the authors
have left speeding up TPMSVM as a subject of future work.
Further, there are at least four regularization parameters that
need regulating in the TPMSVM, a serious problem is the para-
meters selection in the TPMSVM. These drawbacks restrict the
application of TPMSVM to the large scaled problems.

In this paper, we make some improvements on TPMSVM and
propose a primal version, named smooth twin parametric-margin
support vector machine (STPMSVM). First, following [12,20], we
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solve two QPPs of TPMSVM in the primal space by converting
them into two unconstrained minimization problems (UMPs),
rather than two QPPs solved in the dual space in [10]. Smoothing
techniques are used to make the objective function of UMPs twice
differentiable, which makes the UMPs can be solved using fast
Newton method with Armijo stepsize [20]. Second, we employ
the genetic algorithm (GA) to our STPMSVM, our GA-based
STPMSVM can not only select parameters efficiently but also
provide discriminative feature selection. Computational compar-
isons of our STPMSVM against several state of the art binary
classifiers, in terms of classification accuracy, computing time and
model selection, have been made on benchmark datasets for both
linear and nonlinear kernel.

The primary objective of this paper is to improve training
procedure of TPMSVM such that it can be applied to large scaled
problems without any loss of the generalization ability. In what
follows, we give the reasons for choosing smoothing technique
and GA to improve TPMSVM, and summarize favorable and
attractive characteristics of the proposed as follows.

(i) While the computational complexity of primal QPP is the
same as its dual problem, solving primal QPP is believed to be
advantageous than solving dual QPP for large scaled
problems [21]. This is because when the number of data
points is very large, it becomes intractable to compute exact
solution of the QPP and one has to look for approximate
solutions. The approximate dual solution would not be a
good approximate primal solution which we are ultimately
interested in. Many decomposition methods, like SOR [22],
SMO [18] and SVMlight [23], have been proposed for solving
dual QPP but, smoothing techniques for solving primal QPP
have already been successfully applied to SVM [20] and
TWSVM [12], and have been shown to be faster than
decomposition methods like SOR, SMO and SVMlight. In
addition, the same as TWSVM, TPMSVM loses the sparsity
[10], directly optimizing a small subset of the variables in the
dual space during the iteration procedure (such as SMO) may
be unsatisfactory. However, smoothing techniques enable us
to solve primal QPP in spite of the sparsity. Hence, they are
more suitable for large scaled problems.

(ii) The genetic algorithm (GA) [24,25] has been successfully
presented for SVM model selection [26,27], both for para-
meter selection and feature selection. With GA, SVM has
achieved better performance in terms of both computing
time and generalization than the grid and some other
techniques [26]. It has been shown that GA is more suitable
for the case with more parameters because of its reduced
memory usage and fast computing time [26,27]. Different
from SVM and TWSVM, TPMSVM has at least four parameters
to choose properly, so does STPMSVM. Without any loss of
generalization, STPMSVM is faster than the TPMSVM but not
enough in the model selection, so we introduce GA in the
parameter selection to save training time. Moreover, in
[26,27], it has been shown GA can provide discriminative
feature selection. Thus, employing GA to our STPMSVM will
obtain the benefit of selecting the parameters and features
through one procedure.

(iii) Reduced kernel technique [28,29] has been proposed for
solving Smooth SVM (SSVM) [20] and Smooth TWSVM
(STWSVM) [12] with nonlinear kernel, which use a rectan-
gular kernel KðA,A

>
Þ instead of the primal kernel KðA,A>Þ,

where A is a randomly selected subset from the original
dataset A that is typically 10% or less. With rectangular
kernel, RSVM [28] has achieved better performance in terms
of both computing time and generalization than using the

complete square kernel KðA,A>Þ. It has been shown that
RSVM is more suitable for solving very large scaled problems
with nonlinear kernel because of its reduced memory usage
and fast computing time. In later sections, we will show that
reduced kernel technique for nonlinear STPMSVM is a natural
extension. Experiments show that the reduced nonlinear
STPMSVM can deal with 100 K data points with 32 features
in 1.8 s, and enjoy more computational advantages than
TPMSVM.

This paper is organized as follows. In Section 2, a briefly review
of SVM, TWSVM and TPMSVM is given. Our linear and nonlinear
STPMSVM is formulated in Section 3. In Section 4, our GA-based
strategy for model selection of STPMSVM is arranged. Experi-
mental results are described in Section 5, and concluding remarks
are given in Section 6.

2. Preliminaries

Consider a binary classification problem in the n-dimensional
real space Rn. The set of training data points is represented by
T ¼ fðxi,yiÞ9i¼ 1,2, . . . ,mg, where xiARn is input and yiAfþ1,�1g is
corresponding output. We further organize the m1 inputs of Class
þ1 by matrix X1ARm1�n and the m2 inputs of Class �1 by matrix
X2ARm2�n, correspondingly, the m1 outputs of Class þ1 by vector
Y1ARm1 and the m2 outputs of Class �1 by vector Y2ARm2 . Below,
we give a brief outline of the SVM, TWSVM and TPMSVM.

2.1. n-SVM

Linear n-support vector machine ðn-SVMÞ [30], one formula-
tion of standard SVM, searches for a separating hyperplane

f ðxÞ ¼w>xþb¼ 0, ð1Þ

where wARn and bAR. To measure the empirical risk, the soft
margin loss function

Pm
i ¼ 1 maxð0,r�yiðw

>xiþbÞÞ is used. By
introducing the regularization term 1

2 JwJ2 and the slack vector
Z¼ ðZ1, . . . ,ZmÞ

>, the primal problem of n-SVM can be expressed
as

min
w,b,Z,r

1

2
JwJ2
�nrþ 1

m

Xm

i ¼ 1

Zi,

s:t: yiðw
>xiþbÞZr�Zi, ZiZ0, rZ0, i¼ 1, . . . ,m, ð2Þ

where nAð0,1Þ is a parameter with some quantitative meanings
[30]. To be more precise, n is an upper bound on the fraction of
margin errors and a lower bound on the fraction of support
vectors. In addition, with probability 1, asymptotically, n equals to
both fractions. Note that the minimization of the regularization
term 1

2 JwJ2 is equivalent to the maximization of the margin
between two parallel supporting hyperplanes w>xþb¼ 7r.
And the structural risk minimization principle is implemented
in the n-SVM.

2.2. TWSVM

The linear TWSVM [9,11] seeks two nonparallel hyperplanes in
Rn which can be expressed as

f 1ðxÞ ¼w>1 xþb1 ¼ 0 and f 2ðxÞ ¼w>2 xþb2 ¼ 0, ð3Þ

such that each hyperplane is the closest to the data points of one
class and has a certain distance far from the data points of the
other class. A new data point is assigned to Class þ1 or �1
depending upon the distances to the two nonparallel hyper-
planes. To find the hyperplanes, it is required to get the solutions
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