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Abstract

Mean shift is an effective iterative algorithm widely used in computer vision community. However, to our knowledge, its convergence,
a key aspect of any iterative algorithm, has not been rigorously proved up to now. In this paper, by further imposing some commonly

acceptable conditions, its convergence is proved.
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1. Introduction

The mean shift algorithm is a simple iterative statistical
method introduced by Fukunaga and Hostetler [1], which
shifts each data point to the weighted average of a sample
set. The theory is studied further in Refs. [2-5]. In recent
years, it has been widely applied in computer vision com-
munity [3,6], such as tracking, image segmentation, dis-
continuity preserving, smoothing, filtering, edge detection,
etc.

Let {x;, 1 <i<n} be an i.i.d. (independently and identi-
cally distributed) sample data set from probability density
function f(x), x € R™. If f(x) is estimated by f(x) =
Yo wik(Bllx; — x 1%, Cheng [2] gave the mean shift pro-
cedure {y;, j =1,2,...} as the weighted averages of the
samples {x;, 1 <i <n}

n
J
Yi+1 = Z w; Xi

i=1
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to seek the mode of f (x), where w;, wf > 0, are the weights
of sample x;,

n
w) =wik' Bllxi =y IH)x [ wik (Blxi = yil?),

i=1

n .
Zw;’ =1.

i=1

p >0, k(x) is the profile function defined in Ref. [2] (some-
times called window or kernel), and k’(x) the differential
of k(x). Cheng [2] proved the convergence of mean shift
sequence {y;,j = 1,2,...} under the following two
assumptions:

1) k(x) =e™".
(2) The idealized mode in the density surface of random
variable x is

q(x)= e IkI? y<p.

However, since the true value of 7y is unknown, it is difficult
to assure the above assumption (2) of being satisfied in
real application. Hence, its applicability is limited to some
extent. Refs. [3,7,8] attempted to prove the convergence of
mean shift sequence {y;, j=1, 2, ...} under the assumption
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that k(x) is simply a convex and monotonically decreasing
profile, and w; = 1/n. But, as shown in the following, the
proofs are incorrect in Refs. [3,7,8].

In Refs. [7,8], the proofs essentially depend on the wrong
conclusion that “|ly;j41 — y;l|l converges to zero” means
“{yj, j=1,2,...Jconverges”. Here is a counter example:

Counter Example 1. Let y; = 2!21 1/i, then
[ I : 0(j )
11— yill=— — — 00).
Yj+1 —Yj 1 J
However, it is well known that {y;, j = 1,2, ...} does not
converge and is not a Cauchy sequence.

In the convergence proof of mean shift sequence {y;, j =
1,2, ...} in Ref. [3], the key step is

1yjem = Yiem—t 1 4 4 yjer = vl
> N1yjm — 117 (1
However, inequality (1) does not hold. Here is a counter
example:
Counter Example 2. Let m = 2, then
Iyj+2 = il
= llyj42 = yj1 + yit1 — ¥l
= llyjs2 = i1 I+ yjer = vl
+2(yj42 = yi) 01 — )
From Theorem 2 in Ref. [3], the following inequality holds:
ir2 = ¥+ (je1 — yj) =0.
Hence,
2 2 2
lyj+2 = yilmZMyje2 = yjrrll” + lyjer — yil°
It is in conflict with inequality (1). Let y; =1, y;41 =2 and
yj+2 =3, then
Iyje2 = yilI? =13~ 1% = 4

and

Iyjt2 = yjstl? + lyj41 — yjlIP =1+1=2.

Therefore,
Iyjt2 — il = 1yjs2 — vt + llyj+1 — yilI%

In addition to the convergence problem, there are two
other main limitations for the current mean shift algorithm:

(1) No sufficient attention has been paid to the difference
and the anisotropy of the local structure around different
samples. For example, as shown in Fig. 1, since the
sample distribution in the neighborhood of x; is denser
than that of x1, the scale for x, should ideally be smaller
than that for x;. In addition, the sample distribution is
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Fig. 1. Different local structures around different samples. Since the
sample distribution in the neighborhood of x, is denser than that of xq,
the scale for xp should ideally be smaller than that for xi. In addition,
the sample distribution is highly anisotropic in the neighborhood of x»,
and we should take it into account.

highly anisotropic in the neighborhood of x;, and we
should take it into account. In Refs. [2,3,7], however,
the relative scale and local structure are treated identi-
cally for all samples and in every direction. In Ref. [8],
only the difference of relative scale between samples is
accounted for.

(2) No sufficient attention has been paid to the difference of
sample contributions. As we know, the peripheral sam-
ples, often more corrupted by noise, are less reliable.
Hence, different samples should be ideally treated dif-
ferently. In Refs. [3,7,8], the contributions are assumed
to be same for all samples. In Ref. [2], although the con-
tribution differences are considered, the local structure
is not taken into account.

In the next section, we outline some means to extend the
current mean shift algorithm and alleviate these two limi-
tations by accounting for the anisotropy of local structure
around every sample, the difference of relative scale and the
relative importance/reliability between samples. In addition,
the convergence of the iterative points {y;, j=1, 2, ...} and
its function value { f (yj), j=1,2, ...} of the extended algo-
rithm are rigorously proved by adding a modest constraint
in Section 3. The experiments results are given to evaluate
the contribution of the proposed algorithm in Section 4. The
conclusion and remarks are given in Section 5.

2. Preliminaries

Definition 1. Function k(x) is called a bounded kernel if it,
on [0, +00), satisfies:

(1) k(x)=0.
(2) monotonically decreasing: k(x1) >k(x2), 0<x; <x2 <
+ oo.
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