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a b s t r a c t

Spectral partitioning, recently popular for unsupervised clustering, is infeasible for large datasets due to

its computational complexity and memory requirement. Therefore, approximate spectral clustering of

data representatives (selected by various sampling methods) was used. Alternatively, we propose to use

neural networks (self-organizing maps and neural gas), which are shown successful in quantization

with small distortion, as preliminary sampling for approximate spectral clustering (ASC). We show that

they usually outperform k-means sampling (which was shown superior to various sampling methods),

in terms of clustering accuracy obtained by ASC. More importantly, for quantization based ASC, we

introduce a local density-based similarity measure – constructed without any user-set parameter –

which achieves accuracies superior to the accuracies of commonly used distance based similarity.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Unsupervised clustering aims to find distinct groups in a
dataset, often without a priori information on their structures.
A common approach is to construct parametric models based on
known number of clusters. Among them the most popular
method is the k-means clustering (and its variants) which mini-
mizes the total distances of data samples to their corresponding
cluster centroid. Another parametric approach is the use of the
expectation-maximization algorithm or Gaussian mixture mod-
els, which aims to optimize both the cluster centroids and the
cluster variances. However, real datasets often do not fit into
parametric models, which in turn requires nonparametric clus-
tering methods [1].

Recently, spectral clustering [2–4], which exploits pairwise
similarities of data samples using eigendecomposition of their
similarity matrix, has been shown to be successful in several areas
such as information retrieval and computer vision [5,6]. It has
advantageous properties, such as extraction of irregularly shaped
clusters without parametric models and easy implementation,
and it has been supported by theoretical and empirical studies
[7,8]. Detailed reviews on spectral clustering can be found in
[9,10]. For large datasets, however, its use is limited since it is
often infeasible due to the computational complexity of OðN3

Þ and

memory requirement of OðN2
Þ with N being the number of

samples to be clustered [11].
In order to apply spectral methods for clustering of large

datasets, one approach is to use distributed systems for parallelizing
spectral clustering on many computers to overcome the issue of
memory use and computational complexity [12]. This in turn
requires additional resources that should be scaled according
to the size of the dataset. A novel approach, applicable only for
segmentation of large images, is to apply spectral clustering to non-
overlapping small blocks of the image and combine the resulting
partitionings by stochastic ensemble [13]. However, the common
naive approach is to reduce the number of data samples using data
representatives (either sampled among the data samples or
obtained by their quantization), and then apply spectral clustering
to those representatives rather than to the data samples directly
[11,14–18], producing an approximate spectral clustering (ASC).
Fowlkes et al. [14] use random selection using Nystrom method,
and hence may produce different partitionings at each try. Bezdek
et al. [15] use a progressive sampling which has a tendency to over-
sample [18], whereas Wang et al. [16,18] use selective sampling.
Wang et al. [11] also compare different sampling algorithms for
spectral clustering and conclude that selective or k-means sampling
outperform random sampling approach. Additionally, Yan et al. [17]
use k-means and random projection trees as sampling methods and
show experimentally that vector quantization can be successfully
used to select data representatives for fast ASC with slight decrease
in clustering accuracy. Moreover, Belabbas and Wolfe [19] provide
theoretical justification for using vector quantization to determine
the data representatives for approximate spectral clustering.
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Self-organizing maps (SOMs) [20] and neural gas [21] are two
neural networks that can be used for effective vector quantization
of large datasets. Contrary to the k-means quantization, which is
based on iterative adaptation of the centroids (the best-matching
units, BMUs), SOMs and neural gas cooperatively adapt the best-
matching units together with their neighbors (determined by a
function), to reflect the data topology as faithful as possible with
the given number of quantization prototypes. On the one hand,
SOMs use a rigid (usually 2D or 3D) grid structure to define the
neighborhood relations. This also enables the visualization of
high-dimensional data spaces, without dimensionality reduction,
since prototypes neighbor in the grid are (ideally) expected to be
neighbors in the data space as well. On the other hand, the neural
gas defines the neighborhood function in the data space by using
the ranking of distances between the prototypes, without any
forced layout. Thanks to their quantization based on cooperative
adaptation, SOMs and neural gas are successfully used in proto-
type-based data analysis [22,23]. Our first contribution in this
study is to utilize the quantization property of SOMs and neural
gas as preprocessors for approximate spectral clustering of large
datasets, and show that they are usually superior to k-means
quantization, in terms of accuracies achieved by ASC.

In general, another challenge in spectral clustering is to
construct the similarity matrix for eigendecomposition. Even though
different ways can be used for this matrix [9], a common approach is
to define pairwise similarities, sði,jÞ s, using a Gaussian function
based on the (often Euclidean) distances, dðxi,xjÞ, of data samples xi

and xj, i.e.

sði,jÞ ¼ e�ðdðxi ,xjÞ
2=2s2Þ ð1Þ

where s is a decaying parameter determining the neighborhood.
Alternatively, a recent method [24] defines sði,jÞ by including
common-near-neighbor, CNNði,jÞ (the number of data samples in
the intersection of E-neighborhoods of xi and xj), as

sði,jÞ ¼ e�ðdðxi ,xjÞ
2=ð2s2ðCNNði,jÞþ1ÞÞÞ ð2Þ

and show superior clustering accuracies. However, both approaches
requires to set s which has to be determined properly for the best
possible partitioning with spectral clustering. Ref. [3] recommends
to use various s values to find the optimum value whereas [25] uses
a cluster ensemble approach to merge partitionings obtained by
different s. Instead, automated setting of s (different si for each
sample xi) has also been used [26,6,18] by defining si as the distance
to the kth nearest neighbor of data sample xi. However, this
approach introduces another parameter to be set by the user, often
specific to the dataset [24]. To overcome this challenge for vector
quantization based approximate spectral clustering, we define a
similarity matrix based on local data distribution without any user-
defined parameters, as our second contribution in this study.

The paper is outlined as follows. First, we briefly discuss
spectral clustering methods in Section 2; then we describe self-
organizing maps and neural gas, which are vector quantization
methods for approximate spectral clustering used in this study, in
Section 3. In Section 4, we describe our similarity matrix derived
from local data distribution. In Section 5, we show the effective-
ness of the proposed approaches using three synthetic datasets in
[27], six real datasets from UCI Machine Learning Repository [28],
and five large datasets. We conclude in Section 6.

2. Spectral clustering

Spectral clustering methods are associated with relaxed opti-
mization of graph-cut problems, using a graph Laplacian matrix, L

[2–4]. We refer to the tutorials [9,10] (and references therein)
for detailed overview of different methods. Below, we describe

the method in [3] utilized for this study, since several studies
indicate that there is no clear advantage among different spectral
methods as long as a normalized graph Laplacian is considered
[9,8].

Let G¼ ðV ,SÞ be a weighted, undirected graph with nodes V

representing n points in X ¼ fx1,x2, . . . ,xng to be clustered and
edges defined by n� n similarity matrix S (often constructed by
Eq. (1)). Let D be the diagonal matrix denoting the degree of n

nodes where di ¼
P

jsði,jÞ. Then, clustering of X can be formulated
as a graph-cut problem, which partitions the nodes into two sets
P1 and P2¼ V\P1, with respect to an optimization function [29].
To achieve balanced cardinality of the resulting partitions P1 and
P2, a popular way is to optimize the normalized cut

NcutðP1,P2Þ ¼

Pn
j sði,jÞP

vi AP1di
þ

Pn
j sði,jÞP

vj AP2dj
ð3Þ

Due to high complexity in optimization of graph-cut problems,
their optimization is relaxed by spectral graph analysis, introdu-
cing the Laplacian matrix, L¼D�S (a linear operator on G, based
on the similarity matrix S and degree matrix D), and its spectral
decomposition [29]. The Laplacian matrix, L, is constructed in
various ways depending on the approach for graph-cut optimiza-
tion [9,10]. Ref. [2] shows that the use of eigenvector decomposi-
tion (the second smallest eigenvalue and its corresponding
eigenvector) of the normalized Laplacian matrix, Lnorm,

Lnorm ¼D�1=2LD�1=2
¼D�1=2

ðD�SÞD�1=2
¼ I�D�1=2SD�1=2

ð4Þ

achieves an approximate solution to the normalized cut (Eq. (3)).
To extend the solution for extraction of k clusters, Ng et al. [3]
define another normalized Laplacian matrix, Lnorm½3�, based on
similarity matrix S

Lnorm½3� ¼D�1=2SD�1=2
ð5Þ

and find its k eigenvectors with the k highest eigenvalues. Due to
the use of S in Lnorm½3�, the eigenvectors with the k highest
eigenvalues are used in clustering, contrary to the use of those
with the smallest eigenvalues in [2] which uses Lnorm. The
algorithm of Ng et al. [3] has the following steps:

1. Calculate a similarity matrix S (Eq. (1)), diagonal degree matrix
D, and normalized Laplacian Lnorm½3�.

2. Find the k eigenvectors fe1,e2, . . . ,ekg of Lnorm½3�, associated with
the k highest eigenvalues fl1,l3, . . . ,lkg.

3. Construct the n� k matrix E¼ ½e1e2 . . . ek� and obtain n� k

matrix U by normalizing the rows of E to have norm 1, i.e.

uij ¼ eij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

ke2
ik

q
.

4. Cluster the n rows of U with the k-means algorithm into k

clusters.

For vector quantization based approximate clustering, we
first obtain the quantization prototypes with neural networks
(described in the next section), then cluster the quantization
prototypes with the above algorithm. Additionally, the similarity
matrix is calculated also by local si values [26] and by a density-
based similarity measure (CONN) described in Section 4.

3. Vector quantization by neural networks

This section briefly describes the two neural networks, self-
organizing maps [20] and neural gas [21], which are used as
vector quantization methods for selecting the data representa-
tives to be clustered using spectral methods.
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