Available online at www.sciencedirect.com

e PATTERN
. » dclenceDirect RECOGNITION

ELSER Pattern R ition 39 (2006) 22812292 THE JOURNAL OF THE PATTERN RECOGNITION SOCIETY
attern Recognition -
www.elsevier.com/locate/patcog

Fast algorithms for finding disjoint subsequences with extremal densities™

Anders Bergkvist?, Peter Damaschke® *

ADepartment of Molecular Biology, Géteborg University, P.O. Box 462, 40530 Giteborg, Sweden
bSchool of Computer Science and Engineering, Chalmers University, 41296 Goteborg, Sweden

Received 6 July 2005; received in revised form 3 January 2006; accepted 19 January 2006

Abstract

We derive fast algorithms for the following problem: given a set of n points on the real line and two parameters s and p, find s
disjoint intervals of maximum total length that contain at most p of the given points. Our main contribution consists of algorithms whose
time bounds improve upon a straightforward dynamic programming algorithm, in the relevant case that input size n is much bigger than
parameters s and p. These results are achieved by selecting a few candidate intervals that are provably sufficient for building an optimal
solution via dynamic programming. As a byproduct of this idea we improve an algorithm for a similar subsequence problem of Chen et
al. [Disjoint segments with maximum density, in: International Workshop on Bioinformatics Research and Applications IWBRA 2005,
(within ICCS 2005), Lecture Notes in Computer Science, vol. 3515, Springer, Berlin, pp. 845-850]. The problems are motivated by the
search for significant patterns in biological data. Finally, we propose several heuristics that further reduce the time complexity in typical

instances. One of them leads to an apparently open subsequence sum problem of independent interest.
© 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Holes in data; Range prediction; Protein torsion angle; Protein structure prediction; Dynamic programming; Selection algorithms; Time

complexity

1. Problem statement and results

Finding large empty regions (big holes) in data sets is in-
teresting in data mining and statistical inference. The prob-
lem in its most general form is described by a space X, a
family Z of subsets of X, an additive size function that as-
signs a positive real number to every non-empty set in 7,
and a finite set D of n data points. The goal is to find the
largest set in # disjoint to D. In a commonly considered
case, X is a finite-dimensional real vector space, 7 is the
family of axis-parallel boxes, and the size of a box is its
volume.

* Part of the results have been presented in preliminary form in the
Proceedings of the 16th International Symposium on Algorithms and
Computation ISAAC 2005, Lecture Notes in Computer Science, vol. 3827,
Springer, Berlin, pp. 714-723.

* Corresponding author. Tel.: +46 31772 5405; fax: +4631165655.

E-mail addresses: abk@molbio.gu.se (A. Bergkvist),
ptr@cs.chalmers.se (P. Damaschke).

It is natural to generalize the problem in two directions:
we are interested in several disjoint big holes in X rather
than only one largest hole, and we tolerate a limited number
of data points in these holes. That is, we introduce two pa-
rameters s and p, and look for s disjoint sets with maximum
total size which may contain up to p data points.

Already in two dimensions, i.e., for axis-parallel rectan-
gles in the plane, we do not know of complexity results
for this parameterized problem. It is even unclear whether
the problem is polynomial. However, in the present paper
we study the one-dimensional case where % is the set of
intervals contained in a fixed finite-length interval X, and
where the size measure is the length of intervals. This one-
dimensional case is already interesting for some applica-
tions, as we outline in Section 2.

Basically, the one-dimensional problem is easy to solve by
dynamic programming, however the question of algorithms
being as fast as possible for given n, s, p turns out to be
non-trivial. This is the main subject of our paper.

0031-3203/$30.00 © 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.patcog.2006.01.008

http://www.elsevier.com/locate/patcog
mailto:abk@molbio.gu.se
mailto:ptr@cs.chalmers.se

2282 A. Bergkvist, P. Damaschke / Pattern Recognition 39 (2006) 2281-2292

Note that an optimal solution always consists of s open
intervals with data points at their ends. (The term “open”
means that the ends are excluded, i.e., not considered as
points of the interval. We also remark that the two outermost
intervals of a solution may reach the ends of X.) Therefore
we get the following, more convenient formal description.
In a sequence of positive real numbers xo, X1, X2, ..., Xp
called items, we call any set of consecutive items x;, . .., X;
(i <j) an interval of length x; +- - - +x ;. Sometimes we say
“item x;” for “item i with length x;” if there is no confusion.
Obviously, x; (for 0 <i <n) means the distance of the ith
and (i + 1)st data point in their natural ordering in X, while
xo and x;, is the distance of the first and last data point to
the left and right end, respectively, of X. Now our problem
can be stated as follows:

DISJOINT INTERVALS OF MAXIMUM LENGTH (DIMaxL)

Given a sequence xg, X1, X2, . .., X, and integers s > | and
p =0, find s pairwise disjoint intervals with a total of s + p
items and maximum total length.

A batch of remarks is in order here. If x; >0 for all i, an
optimal solution will always use exactly s + p items, oth-
erwise we could add another item to some interval. Hence,
the problem would not change if we wrote “at most s + p
items” in the specification. In our formulation with exactly
s + p items, the x; can be arbitrary real numbers, and an
optimal solution may have to take some negative items, in
order to connect large positive items to intervals. Also, a
problem instance does not change if any constant is added
to all x;. On the other hand, an optimal solution may have
chains of, say, # incident intervals. In such cases, a chain can
be split arbitrarily in 7 other intervals without changing s, p
and the total length. For certain instances, a trivial solution
exists and can be verified in O(n) time: if the s + p largest
items form (at most) s intervals, this is obviously an opti-
mal solution. In particular, DIMaxL with p =0 is a trivial
problem. However, in general the s + p largest items can
be scattered in the sequence, and then the optimum is no
longer obvious. Parts of an optimal solution may consist of
medium-length items that are clustered, and then we have
to find the best among many candidates.

We also mention the relation to independent sets in in-
terval graphs. (We assume some background in graph algo-
rithms. However, the reader may skip this paragraph. The
statements will not be used further, we just had to make sure
that DIMaxL has not already been considered in that con-
text, under a different name.) Given a sequence of numbers,
consider the interval graph G (p) with intervals of at most p
items as vertices, where two vertices are adjacent if the in-
tervals intersect. We sloppily identify intervals and vertices
in G(p). DIMaxL can be rephrased as a special case of find-
ing a maximum weight independent set of s vertices in an
interval graph which is given as an interval model. Although
INDEPENDENT SET and related problems in interval graphs
and other intersection graphs are well studied (we refer to
Ref. [1] for some special results and more pointers to the vast

literature), we cannot directly make use of earlier results,
since we have to apply the special features of our instances
to make our algorithms as fast as possible. In our particular
case, every vertex of an interval graph G(p) belongs to at
most p consecutive cliques, and the vertex weights are the
interval lengths in the interval model. To our best knowledge
there is no previous work on WEIGHTED INDEPENDENT SET
in interval graphs with these special restrictions.
Organization of the paper and results: In Section 2, we
motivate DIMaxL by statistical inference tasks. Our partic-
ular bioinformatics motivation is discussed in more detail,
but there may be more, given that our approach is rather
general and conceptually simple. Section 3 is the core of
the paper: we develop our basic algorithms for DIMaxL. A
naive dynamic programming algorithm solves DIMaxL in
O (spn) time. By some preprocessing that selects possible
intervals for an optimal solution, without missing any candi-
date, we can achieve a time bound O (pn + s p?). Since we
have s, p <n in statistically relevant cases, this alternative
algorithm is then an improvement. As a byproduct we also
improve an algorithm for a similar numerical subsequence
problem: define the density of an interval x;, ..., x; to be
the ratio (x; +---+x;)/(j —i+1). Let us call the following
problem that has been introduced and attacked in Ref. [2].

DISJOINT INTERVALS OF MAXIMUM DENSITY (DIMaxD)

Given a sequence xp, x2, ..., X, and integers k>1 and
[>1, find k disjoint intervals, each with at least [items, so
as to maximize the sum of their densities.

(Loosely speaking, our problem DIMaxL is looking for
low-density regions in point sets, opposite to DIMaxD.)
Chen et al. [2] gave an O (kln) time algorithm, as well as
algorithms running in time O(n) and O (n + 1) in the spe-
cial cases k = 2 and 3, respectively. They explicitly asked
if there is an o(kln) algorithm for general k. We give an af-
firmative answer. We can solve DIMaxD in O(In + k%I?)
time, using the same idea of candidate selection followed
by dynamic programming on the small candidate set. Actu-
ally, this scheme would be applicable to any similar prob-
lems where one has to find a set of disjoint subsequences
that optimizes some objective function. The main property
we need from the problem is that the candidate intervals are
of limited length.

In Section 4 we further elaborate on our approach for DI-
MaxL. For different ranges of parameters s, p we can fur-
ther reduce the “n-free” term of our time bound. Although
these extra improvements are small (third root of a param-
eter), we find the matter interesting from the algorithmic
point of view: better time bounds are achieved by suitable
combinations of the two basic algorithms. While the analy-
sis becomes somewhat tricky, implementation is not harder.
Basically we treat short and long candidate intervals differ-
ently. We also expect that our current bounds are not yet the
ultimate ones.

On the other hand, it is not clear whether the pn term can
be reduced, too. In Section 5, we propose a few heuristics to

Download English Version:

https://daneshyari.com/en/article/531148

Download Persian Version:

https://daneshyari.com/article/531148

Daneshyari.com

https://daneshyari.com/en/article/531148
https://daneshyari.com/article/531148
https://daneshyari.com/

