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Abstract

The locally linear embedding (LLE) is considered an effective algorithm for dimensionality reduction. In this short note, some of its
key properties are studied. In particular, we show that: (1) there always exists a linear mapping from the high-dimensional space to the
low-dimensional space such that all the constraint conditions in the LLE can be satisfied. The implication of the existence of such a linear
mapping is that the LLE cannot guarantee a one-to-one mapping from the high-dimensional space to the low-dimensional space for a given
data set; (2) if the LLE is required to globally preserve distance, it must be a PCA mapping; (3) for a given high-dimensional data set,
there always exists a local distance-preserving LLE. The above results can bring some new insights into a better understanding of the LLE.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The locally linear embedding (LLE) is considered one of
effective algorithms for dimensionality reduction [1]. It has
been used to solve various problems in pattern recognition
[2–5]. However, to our knowledge, the LLE has the follow-
ing two problems to solve:

• If two data points {zi , zj } in the high-dimensional space
are different, their corresponding data points {yi , yj } in a
lower-dimensional space must be different.

• If {zi1, zi2, . . . , zik} are the k-neighborhood of zi , then
{yi1, yi2, . . . , yik} must be the k-neighborhood of yi .

Since the LLE does not involve any metric, in addition,
taking into account our following discussions, we think the
above two problems cannot completely be solved without
additional constraints being further imposed.
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In this note, we will show that

• There always exists a linear mapping from the z-space to
the y-space such that all the constraint conditions in the
LLE can be satisfied.

• If the LLE is required to (globally) preserve distance, it
must be a principal component analysis (PCA) mapping.

• For any given high-dimensional data set, there always ex-
ists a local distance-preserving LLE.

In the note, we suppose the reader is familiar with the
algorithms such as the LLE, the PCA, etc. In addition, we
suppose the reader is familiar with fundamentals of matrix
analysis. Besides, in this note, neither simulations nor
experiments are reported, the correctness of results lie in
our proofs.

2. A linear mapping from the z-space to the y-space

The following proposition shows that there always exists
a linear mapping from the high-dimensional z-space to the
lower-dimensional y-space such that all the constraint
conditions in the LLE can be satisfied.
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Proposition 1. Let {z1, z2, . . . , zm} ⊂ Rn be a high-
dimensional data set, Zn×m = [z1, z2, . . . , zm], if weight
matrix Wm×m satisfies

1T
mWm×m = 0T

m, (1)

Zn×mWm×m = 0n×m, 1 (2)

then ∀d �r(=rank(Ẑn×m)), there exists always a lin-
ear mapping Ad×n and a lower-dimensional data set
{y1, y2, . . . , ym} ⊂ Rd such that Yd×m = Ad×nẐn×m, and
Yd×m satisfies all the constraint conditions in the LLE:

Yd×mWm×m = 0d×m, (3)

Yd×m1m = 0d , (4)

Yd×mYT
d×m = Id×d , (5)

where

1m = (1, 1, . . . , 1)T, Yd×m = [y1, y2, . . . , ym],

Ẑn×m = [z1 − z0, z2 − z0, . . . , zm − z0], z0 = 1

m

m∑
j=1

zj .

Proof. Let Cm×m = ẐT
n×mẐn×m. Since Ẑn×m1m = 0n, the

1-vector 1m is the eigenvector of the matrix Cm×m for eigen-
value 0. Because rank(Ẑn×m) = r , Ẑn×m could be decom-
posed by the SVD decomposition as

Ẑn×m = Un×r�r×rVr×m, (6)

where Un×r is a column-orthogonal matrix, Vr×m a row-
orthogonal matrix, and �r×r a diagonal matrix with positive
diagonal elements. Let Vr×m = [v1, v2, . . . , vm]. Since

Ẑn×mWm×m = [z1, z2, . . . , zm]Wm×m

− [z0, z0, . . . , z0]Wm×m

= 0n×m,

by Eq. (6) we have

Vr×mWm×m = 0r×m. (7)

Since Vr×m is a row-orthogonal matrix, and in addition each
of its row vectors is orthogonal to the null space of matrix
Cm×m, we have

Vr×mVT
r×m = Ir×r , (8)

Vr×m1m = 0r . (9)

Let Âr×n = (�r×r )
−1(Un×r )

T, then from Eq. (6), we have

Vr×m = Âr×nẐn×m. (10)

1 In the LLE, the equality Zn×mWm×m = 0n×m is implied. Other-
wise, minimizing ‖Yd×mWm×m‖2

F
is meaningless. This is because if

the equality does not hold, the obtained Yd×m from the minimization is
not the best one in terms of local linearity preserving.

∀d �r, let Pd×r be a row-orthogonal matrix, which defines a
linear mapping from r-dimensional space to d-dimensional
space, for example, let Pd×r = [Id×d , 0d×(r−d)], then

Yd×m = Pd×rVr×m = (Pd×r Âr×n)Ẑn×m

and Yd×m satisfies the conditions (3)–(5). �

Remarks. 1. Since our mapping is a linear one, from a
given data set {z1, z2, . . . , zm} ⊂ Rn, we can always obtain
its corresponding set {y1, y2, . . . , ym} ⊂ Rd (d < r), but a
one-to-one correspondence cannot be guaranteed between
the two sets. In other words, by the linear mapping, we can
only guarantee that in the r-dimensional space, if two data
points {zi , zj } are different, their corresponding {yi , yj } ⊂
Rr must be different, not in the d(< r)-dimensional space.

2. Since the constraint conditions on set {y1, y2, . . . , ym}
obtained by this proposition are identical to those in the
LLE, our linear mapping must be included in the LLE. By
this reasoning, we think the two problems outlined at the
beginning of this comment cannot be solved without further
conditions being imposed.

3. The relationship between our linear mapping and
the LLE

In Remark 2 of the above section, we indicate that our
linear mapping must be included in the LLE. In this sec-
tion, some specifics of the relationship between the linear
mapping and the LLE will be provided.

Proposition 2. Let Nl(Wm×m) be the left null space
of Wm×m. If the dimension of Nl(Wm×m), denoted as
dim Nl(Wm×m), is of (r + 1), then the LLE must be our
linear mapping.

Proof. Since the row-orthogonal matrix

[
Vr×m

(1/
√

m)1T
m

]

satisfies[
Vr×m(

1/
√

m
)

1T
m

]
Wm×m = 0(r+1)×m, (11)

by dim Nl(Wm×m) = r + 1, each one of the row vectors of
lower-dimensional data matrix Yd×m obtained by the LLE
must be a linear combination of the row vectors of matrix
Vd×m:

yi =
r∑

j=1

pjivj , i = 1, 2, . . . , d.

Hence,

Yd×r = Pd×rVr×m, (12)

where Pd×r = [pij ], which defines a linear mapping
from the r-dimensional space to d-dimensional space.
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