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a b s t r a c t

We introduce a new method to determine the flow field of an image sequence using multi-scale anchor

points. These anchor points manifest themselves in the scale-space representation of an image. The

novelty of our method lies largely in the fact that the relation between the scale-space anchor points

and the flow field is formulated in terms of soft constraints in a variational method. This leads to an

algorithm for the computation of the flow field that differs fundamentally from previously proposed

ones based on hard constraints. We show a significant performance increase when our method is

applied to the Yosemite image sequence, a standard and well-established benchmark sequence in optic

flow research. Also, it is shown that this performance is not sensitive to slight changes in the two

parameters used and that, with the same parameter values, our method yields very good results in the

Rubber Whale image sequence as well.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Optic flow describes the apparent motion in an image sequence.
A variety of approaches exists to estimate this motion. Survey
papers include those by Barron et al. [1] and Mitchie et al. [2].

Differential methods are based on the most widespread
approach, which uses spatiotemporal derivatives to describe the
local image structure. The flow field is assumed to connect points
in subsequent frames of the image sequence with similar
structure. For example, in one of the earliest methods, proposed
by Horn and Schunck [3], this ‘‘structure’’ is the image intensity,
which leads to the well-known optic flow constraint equation
(henceforth abbreviated OFCE). An overview of current develop-
ments in differential methods can be found in Bruhn et al. [4].
A problem that is encountered by these methods is that the
structure does not always remain constant over time. For
example, the global image intensity may vary over time.
More complex terms to describe the structure can be used to
overcome this problem [5,6]. A second problem is that many
possible solutions exist, since points on level-sets have the same
image intensity. This requires a so-called prior, which determines
a unique solution based on prior knowledge. A prior usually is a
regularization term, which can for example prefer an overall
smooth solution with sparse discontinuities [7–9].

Another well performing approach is that of region matching,
in which the image is split up into small blocks, each of which is
translated to match the image neighborhood [10]. Because of their
low computational cost, these methods are widely used in
applications such as temporal up-scaling of video signals and
video compression.

Our method can be placed in the category of feature-tracking
methods. An overview of such methods can be found in [11].
However, in contrast to most feature-tracking algorithms, the
features we use do not correspond to specific points in the image
sequence. Instead, we use anchor points that exist at different
scales in scale-space, called toppoints (properly defined in Section
2.1). Therefore, instead of corresponding to points, the features
we track actually represent entire regions in the image sequence.
Using toppoints to extract the motion from an image sequence
has been first proposed by Janssen et al. [12] and Florack et al.
[13]. In these papers, the relation between the toppoint velocity
and the flow field was implemented using a hard constraint,
which means that this constraint has to be fulfilled exactly. The
advantage is that their method is entirely parameter free, but the
price of this is sensitivity to outliers. In the method presented in
this paper, a 1-parameter soft constraint is used, yielding higher
robustness against errors in the estimated toppoint velocity or
deviations from the stipulated relation between toppoint velocity
and the flow field.

Toppoints are found throughout the scale-space of each frame
of the image sequence as isolated entities. Therefore they are truly
multi-scale, in contrast to other multi-scale features which are
found by applying scale-selection to points that exist at every
scale, such as corners. Another use of toppoints is to reconstruct
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an image from the values of derivatives taken at toppoint
positions, cf. the papers by Lillholm [14], Nielsen [15] and Janssen
[16]. In these papers it is shown that features at the toppoint
positions can be used to efficiently represent the information
contained in an image. An important property is that the amount
of toppoints found in a certain area of the image is proportional to
the amount of information in that area.

2. Theory

In this chapter we will first explain how the scale-space
representation of an image is defined and what toppoints are. Also
important properties of toppoints are mentioned and we try to give
toppoints a more intuitive meaning with some visualizations. Next
we explain how to calculate toppoint velocities, and the method
used to obtain the actual flow field from the toppoint velocities.

2.1. Scale-space and toppoints

The scale-space representation fs(x,y)¼ f(x,y;s), where f AC1

ðR2
�Rþ Þ \ L2ðR

2
�Rþ Þ, of a static scalar image f0AL2ðR

2
Þ is

defined by the convolution of the image with a Gaussian kernel
fsðx,yÞ ¼fðx,y; sÞ, where fAC1ðR2

�Rþ Þ \ L2ðR
2
�Rþ Þ and

sARþ denotes the scale (for tutorial books on scale-space see
ter Haar Romeny [17], Florack [18] and Lindeberg [19]):

f : R2
�Rþ-R : ðx,y; sÞ/f ðx,y; sÞ

¼
def
ðf0*fsÞðx,yÞ,

fsðx,yÞ ¼fðx,y; sÞ ¼
def 1

4ps
exp �

x2þy2

4s
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: ð1Þ

This results in a 3D function, where a slice of constant scale
represents a blurred version of the original image.

The scale-space of an image fulfills the heat equation, since
Green’s function of the Laplacian operator is a Gaussian kernel:

@sf ðx,y; sÞ ¼Dðx,yÞf ðx,y; sÞ,

@sf ðx,y;0Þ ¼ f0ðx,yÞ: ð2Þ

The Laplacian in the spatial directions x and y is denoted by Dðx,yÞ.
A singular point in scale-space, also called a toppoint, occurs

when the following conditions are fulfilled (see Gilmore et al. [20]
and Damon [21]):

rðx,yÞf

det H

� �
¼

fx

fy

fxxfyy�f 2
xy

2
64

3
75¼ 0,

where

H¼
def fxx fxy

fxy fyy

" #
: ð3Þ

The gradient operator with respect to x and y is denoted by rðx,yÞ

and partial derivatives of f are indicated by self-explanatory
subscripts. The condition states that the gradient is zero at
toppoints, which in general occurs at extrema and saddle points
in 2D images. These extrema and saddle points exist at every
scale, and form the so-called critical paths through scale-space.
When two critical paths, corresponding to a saddle point and an
extremum, collide as scale increases, an annihilation takes place.
A pair of two critical paths can also be created when moving up in
scale, which is called a creation. The points in scale-space where
these events take place are called toppoints. As a consequence,
toppoints are locations in scale-space where a topological change
occurs. Fig. 1 shows how two Gaussian blobs merge when scale

increases, causing the maximum of the smallest blob to annihilate
with the saddle point between the two blobs, creating a toppoint
at the scale where this occurs.

A well-posed formulation of spatial derivatives of an image in
scale-space is given by partially integrating the convolution
product of a derivative of the image f0 with a Gaussian filter fs,
see Eq. (1), using the property that fs is a Schwartz function:

ð@n
x@

m
y f0*fsÞðx,yÞ ¼ ðf0*@n

x@
m
y fsÞðx,yÞ: ð4Þ

In fact, because f0 is often not (m+n) times differentiable, we
define the scale-space of an image derivative by the right hand
side of Eq. (4). This results in a lower-bound on the scale at which
derivatives can be calculated numerically, which increases with
derivative order. Derivatives with respect to scale can be
calculated using only spatial derivatives by means of Eq. (2).

2.2. Toppoint velocity

If we consider a sequence of successive images, or a movie, in
which objects move, the toppoints will move as well. The
movement of toppoints in spatial and scale direction is defined
as: ð _x, _y, _sÞAR3. Note that e.g. _xðtÞ ¼ @txðtÞ represents the time
derivative of the x(t) position of the toppoint. An expression for
this toppoint movement can be obtained by implicitly differ-
entiating the definition of toppoints as stated in Eq. (3) with
respect to the time parameter t:

d
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If the matrix is invertible, Eq. (5) supplies us with a scheme to
calculate the movement of toppoints in an image sequence. The

Fig. 1. (Top) A series of scale-space slices of an image of two Gaussian blobs of

different sizes, where scale increases to the right. Red circles denote maxima and

blue crosses denote saddle points. A toppoint is located between the 5th and 6th

slice, where a maximum and a saddle point annihilate. (Bottom) The critical paths

of the scale-space of the same image, where a toppoint is indicated by a red dot.

(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

P.A.G. van Dorst et al. / Pattern Recognition 44 (2011) 2057–20622058



Download	English	Version:

https://daneshyari.com/en/article/531234

Download	Persian	Version:

https://daneshyari.com/article/531234

Daneshyari.com

https://daneshyari.com/en/article/531234
https://daneshyari.com/article/531234
https://daneshyari.com/

