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a b s t r a c t

Being the first stage of analysis within an image, low-level feature detection is a crucial step in the

image analysis process and, as such, deserves suitable attention. This paper presents a systematic

investigation into low-level feature detection in spectrogram images. The result of which is the

identification of frequency tracks. Analysis of the literature identifies different strategies for accom-

plishing low-level feature detection. Nevertheless, the advantages and disadvantages of each are not

explicitly investigated. Three model-based detection strategies are outlined, each extracting an

increasing amount of information from the spectrogram, and, through ROC analysis, it is shown that

at increasing levels of extraction the detection rates increase. Nevertheless, further investigation

suggests that model-based detection has a limitation—it is not computationally feasible to fully

evaluate the model of even a simple sinusoidal track. Therefore, alternative approaches, such as

dimensionality reduction, are investigated to reduce the complex search space. It is shown that, if

carefully selected, these techniques can approach the detection rates of model-based strategies that

perform the same level of information extraction. The implementations used to derive the results

presented within this paper are available online from http://stdetect.googlecode.com.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of detecting tracks in a spectrogram (also known
as a LOFARgram, periodogram, sonogram, or spectral waterfall),
particularly in underwater environments, has been investigated
since the spectrogram’s introduction in the mid 1940s by Koenig
et al. [26]. Research into the use of automatic detection methods
increased with the advent of reliable computational algorithms
during the 1980s, 1990s and early 21st century. The research area
has attracted contributions from a variety of backgrounds, ran-
ging from statistical modelling [41], image processing [1,10] and
expert systems [35]. The problem can be compounded, not only
by a low signal-to-noise ratio (SNR) in a spectrogram, which is the
result of weak periodic phenomena embedded within noisy time-
series data, but also by the variability of a track’s structure with
time. This can vary greatly depending upon the nature of the
observed phenomenon, but typically the structure arising from
signals of interest can vary from vertical straight tracks (no
variation with time) and oblique straight tracks (uniform frequency

variation), to undulating and irregular tracks. A good detection
strategy should be able to cope with all of these.

In the broad sense this ‘problem arises in any area of science
where periodic phenomena are evident and in particular signal
processing’ [44]. In practical terms, the problem forms a critical
stage in the detection and classification of sources in passive
sonar systems, the analysis of speech data and the analysis of
vibration data—the outputs of which could be the detection of a
hostile torpedo or of an aeroplane engine which is malfunction-
ing. Applications within these areas are wide and include identi-
fying and tracking marine mammals via their calls [39,36],
identifying ships, torpedoes or submarines via the noise radiated
by their mechanical movements such as propeller blades and
machinery [52,7], distinguishing underwater events such as ice
cracking [16] and earth quakes [20] from different types of source,
meteor detection, speech formant tracking [47] and so on. Recent
advances in torpedo technology has fuelled the need for more
robust, reliable and sensitive algorithms to detect ever quieter
engines in real time and in short time frames. Also, recent
awareness and care for endangered marine wildlife [36,39] has
resulted in increased data collection which requires automated
algorithms to detect calls and determine local specie population
and numbers. The research presented in this paper is applicable to
any area of science in which it is necessary to detect frequency
components within time-series data.
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A spectrogram is a visual representation of the distribution of
acoustic energy across frequencies and over time, and is formally
defined in [29]. The vertical axis of a spectrogram typically
represents time, the horizontal axis represents the discrete
frequency steps, and the amount of power detected is represented
as the intensity at each time-frequency point. For a complete
review of spectrogram track detection methods the reader is
referred to a recently published survey of spectrogram track
detection algorithms [29].

The methods presented can be reduced to, and can therefore
be characterised by, their low-level feature detection mechan-
isms. Low-level feature detection is the first stage in the detection
of any object within an image and it is therefore key to any higher
level processing. For a spectrogram, this stage results in the
identification of unconnected points that are likely to belong to
a track, which are output in the form of another image [18]. It is
found that a number of mechanisms are in use, however, there
exists no systematic investigation into the advantages and dis-
advantages of each. Abel et al. [1], Di Martino et al. [9], Scharf and
Elliot [46] and Paris and Jauffret [41], to name but a few, take the
approach of detecting single-pixel instances of the tracks, there-
fore only intensity information can be exploited in the decision
process. Methods such as those presented by Gillespie [17],
Kendall et al. [25] and Lemming [34] use windows in a spectro-
gram to train neural network classifiers—the benefits of this,
however, were not investigated and the research was probably
motivated for the ability to use neural networks. In addition to
intensity information, their approach allowed for information
regarding the track structure to be exploited in the decision
process. Nevertheless, an empirical study of the differences and
detection benefits between the two approaches is still lacking.
It would be expected that when intensity information degrades,
such as in low signal-to-noise ratio spectrograms, the structural
information will augment this deficit and thus improve
detection rates.

This paper presents such a study. Firstly three low-level
feature detectors are defined, each of which acts upon an
increasing amount of information. These are termed ‘uncon-
strained’ detectors as they:

� perform an exhaustive search of the feature space;
� retain all of the information provided to them by the

feature model;
� utilise the original, unprocessed, data.

The exhaustive search performed by these methods, however,
means that they are computationally expensive and, as such, a
number of ‘constrained’ detectors are examined. These ‘con-
strained’ detectors are characterised by one or more of the
following:

� machine-learning techniques are utilised for class modelling;
� the data is transformed through dimensionality reduction;
� the data is transformed through preprocessing,

and therefore these detection techniques simplify the search
space. All of the ‘constrained’ feature detectors evaluated derive
feature vectors from within a window and they therefore act
upon intensity and structural information. The ‘constrained’
detectors are split into two categories—data-based and model-
based—to reflect the source of the training samples utilised
by their supervised learning process. Finally, the performance of
a model-based ‘unconstrained’ feature detector is compared
against a model-based ‘constrained’ feature detector to ascer-
tain the degree of performance divergence between the two
approaches.

Furthermore, this paper presents a novel transformation that
integrates information from harmonic locations within the spec-
trogram. This is possible due to the harmonic nature of acoustic
signals and is defined with the aim of revealing the presence of an
acoustic source at low signal-to-noise ratios by utilising all of the
information available. The benefits of performing low-level fea-
ture detection whilst combining information from harmonic
locations are shown at the end of this paper through a comparison
with the detection performance achieved by the low-level feature
detectors when applied to the original spectrogram.

The remainder of this paper is organised as follows: Section 2
presents the low-level detection mechanisms; these are evaluated
in Section 3 and a discussion of findings is presented; and finally
the conclusions of the investigation are drawn in Section 4.

2. Method

In this section several low-level feature detection mechanisms
are described and investigated. By definition, the detection of
lines and edges forms two distinct problems and is commonly
approached differently [18]; an edge is defined by a step function,
and a line by a ridge function. Edge detectors such as the Canny
operator, along with more recent methods [32], are specifically
defined to detect step features and are therefore not evaluated
here. The Laplacian detector is, however, an edge detector which
can be applied to line detection [18] and therefore it is evaluated
in Section 3 of this paper.

2.1. ‘Unconstrained’ feature detectors

Detection methods that utilise dimensionality reduction tech-
niques such as principal component analysis [22] to reduce the
model or data complexity, lose information regarding the feature
model in the process [6]. Pre-processing of the data also intro-
duces information loss. This information loss detracts from a
detector’s ability to detect features and therefore they produce
sub-optimal detection results. A method which models the data
correctly and does not lose any information in the detection
process will have the most discrimination power as a feature
detector, under the condition that it correctly models the features
to be detected. These types of detectors are more generally
referred to as correlation methods in the image analysis domain.
In order for such methods to detect features that vary greatly, a
model has to be defined with parameters corresponding to each
variation type that can be observed. An exhaustive search for the
parameter combination that best describes the data is conducted
by matching the model to the unprocessed data by varying its
parameters. In this section are defined three detection methods
with the properties of an ‘unconstrained’ feature detector, i.e. no
model reduction or approximation is performed during the search
for the feature, and no preprocessing of the data that may destroy
information is carried out (for example filtering or calculating
gradient information). Three modes of detection have been
identified, each of which increases the amount of information
available to the detection process from the previous mode:
individual pixels; local intensity distribution; and local structural
intensity distribution. Individual pixel classification performs
detection based upon the intensity value of single pixels. By
definition this method makes no assumption as to the track shape
and consequently is the most general of the methods in terms of
detecting variable structure. A track, however, ‘is a spectral
representation of the temporal evolution of the signal’ [8] and,
therefore, ‘can be expressed as a function of the time’ [8], i.e. it is
composed of a collection of pixels in close proximity to each
other. Performing the detection process using individual pixels
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