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Clustering noisy data in a reduced dimension space via multivariate
regression trees
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Abstract

Cluster analysis is sensitive to noise variables intrinsically contained within high dimensional data sets. As the size of data sets increases,
clustering techniques robust to noise variables must be identified. This investigation gauges the capabilities of recent clustering algorithms
applied to two real data sets increasingly perturbed by superfluous noise variables. The recent techniques include mixture models of
factor analysers and auto-associative multivariate regression trees. Statistical techniques are integrated to create two approaches useful for
clustering noisy data: multivariate regression trees with principal component scores and multivariate regression trees with factor scores.
The tree techniques generate the superior clustering results.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

A characteristic common to many data sets is “noise
variables”. Noise variables contain no relevant informa-
tion and mask the underlying structure of the data set. The
prevalence of noise variables in data sets is increasing: an
unavoidable consequence as the size of data sets increases.

It is known that care must be taken when clustering large
noisy data sets because including superfluous variables may
induce spurious clusters or blur existing cluster boundaries.
The researcher must use a clustering algorithm suitable for
noisy high dimensional data sets. These clustering algo-
rithms will intrinsically incorporate dimension reduction.

Here we trial auto-associative multivariate regression
trees [1] using noisy data. We further extend multivariate
regression trees as a clustering technique by incorporating
dimension reduction, and demonstrate their capabilities
when clustering noisy data. We reduce the dimension of the
data set globally using either factor or principal components
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analysis, and subsequently cluster in the reduced factor or
principal components space via the regression tree. The ca-
pabilities of mixture models of factor analysers [2,3], a clus-
tering technique featuring local dimensionality reduction,
are also investigated.

We assess the potential of these algorithms when cluster-
ing noisy data sets, by perturbing two data sets via the intro-
duction of superfluous variables. Clustering techniques are
applied to the perturbed data set and their capabilities to re-
cover the known clusters are gauged. This error perturbation
experiment has been used previously by Milligan [4]. We
extend Milligan’s experiment to include real-life data sets,
whilst benchmarking to the classical K-means technique.
Our results show the superiority of multivariate regression
trees with principal component scores and/or factor scores
when clustering noisy data.

2. Theory

2.1. Principal components analysis and factor analysis

Both principal components analysis and factor analysis
are dimension reduction techniques. Principal components
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analysis attempts to model the total variance of the origi-
nal data set, via new uncorrelated variables called principal
components [5]. The principal components are linear com-
binations of the original variables:

y = ATx,

where x is a vector of the original variables; y is a p element
vector of principal component scores; and A is obtained from
the spectral decomposition of �.

There are p principal components. However, the first q
principal components usually account for most of the vari-
ation within the data set. Dimension reduction is achieved
by discarding the latter p − q principal components. Then
� is approximated by its first q eigenvectors. Observational
units are represented in the q dimensional subspace via the
first q principal component scores.

Factor analysis attempts to explain the variables by
assuming that they can be generated as a linear combi-
nation of q unobservable common factors (usually q>p)
plus a unique factor [5]. The factor analysis model is
given by

x = µ + F z + �, (1.1)

where µ is a mean vector; F is a p×q matrix of factor load-
ings; z is a q dimensional vector of hypothetical common
factors; and � is a unique factor. Because the z are hypothet-
ical, imposing assumptions z ∼ N(0, Iq) and � ∼ N(0, D)

allows the estimation of F.
We see that unlike principal components analysis, factor

analysis distinguishes between common and unique vari-
ance. The factor analysis model implies that �=FF T +D.
The p × q matrix F contains the factor loadings. The factor
loadings are the correlations of a variable with a common
factor z [6]. D, a diagonal matrix, contains the specific vari-
ances of each variable: the unique variance of each variable
that is not associated with the other variables. Therefore, the
p ×p covariance matrix � is modelled by a p × q matrix F
and a diagonal matrix D, implying a substantial amount of
dimension reduction if q>p.

Unlike principal components analysis, Eq. (1.1) shows
that factor analysis does not provide a unique transforma-
tion from factors to variables. In fact, the solution can be
rotated to make it more interpretable. Observational units
can be represented in the q dimensional factor space by the
estimated values of the hypothetical common factors, called
“factor scores”.

As a data set increases in size, the factor analysis so-
lution is likely to approach the principal components so-
lution [5]. Despite this fact, we use both factor scores
and principal component scores as response variables
in the multivariate regression trees and investigate any
differences.

2.2. Multivariate regression trees and auto-associative
multivariate regression trees

Regression Trees begin with all the data contained within
a single node. The root node is then split in two on the
basis of the value of an explanatory variable so as to make
the two new nodes more homogenous with respect to the
response variables. The splitting process is continued until
the terminal nodes (nodes not split in two) are sufficiently
homogenous.

Mathematically, the binary decision function that spits a
node is chosen such that it maximizes the decrease in R(T)
[7]. R(T) is given by

R(T ) = 1

n

∑
i∈T̃

∑
xi∈t

(
yi − ȳ(t)

)2, (1.2)

where xi is the vector of measurements of p explanatory
variables for the ith observational unit; yi is the vector of
measurements of the response variables for the ith observa-
tional unit; T̃ is the set of all nodes and; ȳ(t) is the average
response vector of node t.

Observational units within a terminal node are similar to
each other with respect to the response variables. By repli-
cating the explanatory variables as the response variables
(that is, using identical response and explanatory variables)
an auto-associative multivariate regression tree can be used
as a divisive clustering technique.

We suggest a relaxed criterion for selecting the natural
number of clusters found by an auto-associative multivariate
regression tree: the “elbow” of the tree’s relative error curve.
This tree will not attain optimal predictive performance, but
any further splitting will result in only a small decrease in
the heterogeneity of the terminal nodes. Therefore, at the
number of nodes indicated by the location of the elbow, the
clusters are sufficiently homogenous.

The location of the elbow is questionable. We deemed the
elbow as the point, k̂, where the gradient of the relative error
curve changed from being steep to gentle. Specifically, we
chose k̂ as the k that minimized

abs

(
RE(k + 1) − RE(k)

RE(k) − RE(k − 1)

)
,

where RE(k) is the value of the relative error curve at k.

2.2.1. Multivariate regression trees with principal
component scores and factor scores

Clustering via an auto-associative multivariate regression
tree by replicating the explanatory variables as response
variables is computationally intensive if the data set is
large. Moreover, including redundant variables as response
variables may induce suboptimal results. Reducing the
dimension of the response variables may produce more
stable results. We propose two techniques for reducing the
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