
A sum-over-paths extension of edit distances accounting for all
sequence alignments

Silvia Garcı́a-Dı́ez a,�, Franc-ois Fouss b, Masashi Shimbo c, Marco Saerens a

a Université de Louvain, ISYS, LSM, Louvain-la-Neuve, Belgium
b Facultés Universitaires Catholiques de Mons, Management Science Department, LSM, Belgium
c Graduate School of Information Science, Nara Institute of Science and Technology, Japan

a r t i c l e i n f o

Article history:

Received 7 October 2009

Received in revised form

29 November 2010

Accepted 30 November 2010
Available online 3 December 2010

Keywords:

Edit distance

Longest common subsequence

Sequence comparison

Approximate string matching

Dynamic programming

Viterbi algorithm

Shortest path

a b s t r a c t

This paper introduces a simple Sum-over-Paths (SoP) formulation of string edit distances accounting for

all possible alignments between two sequences, and extends related previous work from bioinformatics

to the case of graphs with cycles. Each alignment Y, with a total cost CðYÞ, is assigned a probability of

occurrence PðYÞ ¼ exp½�yCðYÞ�=Z where Z is a normalization factor. Therefore, good alignments (having

a low cost) are favored over bad alignments (having a high cost). The expected costP
YAPCðYÞexp½�yCðYÞ�=Z computed over all possible alignments YAP defines the SoP edit distance.

When y-1, only the best alignments matter and the measure reduces to the standard edit distance. The

rationale behind this definition is the following: for some applications, two sequences sharing many good

alignments should be considered as more similar than two sequences having only one single good,

optimal, alignment in common. In other words, sub-optimal alignments could also be taken into account.

Forward/backward recurrences allowing to efficiently compute the expected cost are developed. Virtually

any Viterbi-like sequence comparison algorithm computed on a lattice can be generalized in the same

way; for instance, a SoP longest common subsequence is also developed. Pattern classification tasks

performed on five data sets show that the new measures usually outperform the standard ones and, in any

case, never perform significantly worse, at the expense of tuning the parameter y.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. General introduction

Approximate string matching (ASM) algorithms find applica-
tions in various areas, such as pattern recognition [57], computer
science [12,54], bioinformatics [17,29,51], and computational
linguistics [27]. Numerous extensions have been proposed, allow-
ing either to improve the performance of the basic techniques or to
extend their applicability to new problems for which the basic
techniques are not suited.

The aim of this work is to extend, in a straightforward way, the
basic ASM algorithms in the following way. Most of the ASM
algorithms return the score provided by the best, optimal, align-
ment between two sequences. By optimal, we mean the alignment
corresponding to the least total cost, which can be computed by the
well-known Viterbi algorithm [20]. Now, instead of only relying on
the best alignments, we propose to average the total cost over all

the possible alignments. Indeed, as noticed in [17], relevant
information is also contained in the sub-optimal paths. For some
applications, two sequences sharing many good alignments should
be considered as more similar than two sequences having only one
single good, optimal, alignment in common. To this end, we adopt a
Sum-over-Paths (SoP) formalism, considering that each alignment
corresponds to a path on the dynamic programming lattice. This
formalism is directly inspired by [49], which was itself inspired by
the work of Akamatsu in transportation sciences [3]. The same idea
has already appeared in bioinformatics for acyclic lattices [40,70]
(see Section 1.2). The SoP generalizes this idea to arbitrary graphs.

The basic idea is to consider the set of all possible alignments
and to weight their contribution to the total cost according to their
respective quality. Each alignment is weighted by a probability
mass penalizing bad alignments, so that the contribution of better
alignments is more important. Concretely, the alignment choice is
weighted by imposing a pre-defined entropy level. The probability
distribution on the set of alignments is defined as the one
minimizing the total expected cost for the predefined entropy. It
turns out that this optimal probability distribution is a Boltzmann
distribution on the set of alignments (see Section 2.3 or [49]),
depending on a parameter yFthe inverse temperature which is
inversely related to the entropy – controlling the trade-off between
the contribution of good and bad alignments. The SoP edit distance

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.patcog.2010.11.020

� Corresponding author.

E-mail addresses: silvia.garciadiez@uclouvain.be (S. Garcı́a-Dı́ez),

francois.fouss@fucam.ac.be (F. Fouss), shimbo@is.naist.jp (M. Shimbo),

marco.saerens@uclouvain.be (M. Saerens).

Pattern Recognition 44 (2011) 1172–1182

www.elsevier.com/pr
dx.doi.org/10.1016/j.patcog.2010.11.020
mailto:silvia.garciadiez@uclouvain.be
mailto:francois.fouss@fucam.ac.be
mailto:shimbo@is.naist.jp
mailto:marco.saerens@uclouvain.be
dx.doi.org/10.1016/j.patcog.2010.11.020


is then defined as the total expected cost computed over all possible
alignments, the expectation being taken according to the Boltz-
mann distribution.

It is shown that this total expected cost can be easily computed
within this framework. The resulting algorithm is similar to the
forward/backward algorithm used in training hidden Markov
models: the recurrence relations allowing to compute the different
quantities in an efficient way are readily derived. In particular, our
algorithm reduces to the standard forward/backward algorithm
when the y parameter is equal to 1. On the other hand, when y-1,
it corresponds to the Viterbi algorithm and thus reduces to the
basic algorithm computing only the best alignments. Two standard
edit distance algorithms are extended within this framework: the
Levenshtein edit distance (LED) and the longest common subse-
quence (LCS); they will respectively be called the SoP edit distance
(SoP ED) and the SoP common subsequence similarity (SoP CS).

1.2. Related work

As discussed in [49], the idea of randomizing the policy was
introduced by [1,2] in the context of reinforcement learning and
was inspired by the entropy rate of an ergodic Markov chain
defined in information theory (see, e.g., [13]). In this previous work,
the sum of the local entropies on all nodes was fixed and the
optimal policy for this fixed level of entropy was computed through
a value-iteration-like algorithm.

In [49], instead of fixing the local entropy defined at each node as in
[1,2], the global entropy spread over the whole network is fixed. While
this difference seems a priori insignificant, it appears that constraining
the global spread entropy of the network is more natural and easier to
compute. Clearly, the nodes that need a large spread are difficult to
determine in advance, and the model has to distribute the entropy by
optimizing it globally all over the network. It was shown in [49] that the
optimal randomized policy can be found by solving a simple system of
linear equations. In the same paper, the authors showed that when the
graph is acyclic—and therefore a lattice—the expected cost as well as
the policy can be computed efficiently from two simple recurrence
relations. This fact is exploited in this paper in order to define a
randomized edit distance.

Apart from this previous work [1,2,49], and some others in game
theory (see for instance [42]) or Markov games [34], very few optimal
randomized strategies have been exploited in the context of shortest-
path problems. There is, however, one exception: Akamatsu’s model
[3], who designed a randomized policy for routing traffic in transporta-
tion networks. In transportation science, randomized strategies are
called stochastic traffic assignments and, within this context, Akamatsu’s
model is the model of reference. This work, as well as [49], are inspired
by Akamatsu’s model.

Let us also mention some papers that are related to path
randomization, and therefore to the present work. The entropy
of the paths (or trajectories) connecting an initial and an absorbing
destination node of an absorbing Markov chain was studied in [18].
In this paper, the authors provide formulae allowing to compute
the entropy needed to reach the destination node. In [56] a one-
parameter family of algorithms that recover both the procedure
for finding shortest paths as well as the iterative algorithm for
computing the average first-passage time in a Markov chain is
introduced. However, having a heuristic foundation, it is not based
on the optimization of a well-defined cost function. In another
context, Todorov [60] studied a family of Markov decision problems
that are linearly solvable, that is, for which a solution can be
computed by solving a matrix eigenvector problem. In order to
make this possible, Todorov assumes a special form of control for
the transition probabilities, which recasts the problem of finding
the policy into an eigenvector problem. In [9] a Markov chain that

has the fastest mixing properties is designed, while [55] discuss its
continuous-time counterpart. In a completely different framework,
uninformed random walks, based on maximizing the long-term
entropy [15,61] have recently been proposed as an alternative to
the standard PageRank algorithm. Finally, notice that some authors
tackled the problem of designing ergodic (non-absorbing) Markov
or semi-Markov chains in a maximum-entropy framework (see for
instance [21,22] and the references therein).

Within the context of computing edit distances between
sequences, there have been successful attempts to account for
all possible alignments (see, e.g., [10,17,28,31,35,48,52,68], among
others). The sequence comparison model introduced in [17] is quite
popular in bioinformatics. It is based on a hidden Markov model
(HMM) of sequence pairs generation, called the pair HMM. The
model is trained by maximum likelihood on a sequences sample
and, once is trained, it provides the likelihood of observing any two
sequences, each alignment being weighted by its probability. The
SoP edit distance introduced in this paper shares therefore some
similarities with the pair HMM, but is much simpler since it does
not require any transition-probability estimation, i.e., it is model-
free, although by modifying the edition costs or the similarity
measure we could adapt it to any model or specific task. It is,
however, also possible to fix a priori the transition probabilities of
the pair HMM. In that case, the SoP edit distance is equivalent to the
pair HMM with a suitable choice of the editing costs, and parameter
y equal to 1. However, two important differences between the
proposed SoP techniques and pair HMMs is that (i) it weights the
contribution of the different alignments, according to their respec-
tive total costs, and (ii) it depends on a parameter allowing to
regulate the degree of exploration. It therefore encompasses both
the Viterbi and the Baum–Welch algorithms as special cases. It will
be observed in the experimental section that the best performance
obtained by the SoP techniques is often achieved for y parameter
values greater than 1. Finally, notice that a valid kernel derived
from a pair HMM was proposed in [26,68].

The string kernels introduced in [31,33,35,48,50,52] compute a
score depending on all the possible common subsequences of the two
compared sequences. The main idea behind these sequence-com-
parison techniques is to reward common subsequences, contiguous
or not, depending on the technique. However, when the size of the
alphabet is very low, there is a huge quantity of such short common
subsequences and very few long common subsequences, so that the
obtained score does not reflect accurately the proper similarity
between the two sequences. Indeed, a much larger weight should be
put on long common subsequences; this is exactly what the SoP
edit distance does. We therefore expect string kernels to perform
well when the alphabet is quite large (for instance in the context of
text mining—in this case—there are very few long common
subsequences; see for example [11]), and worse in the case of
reduced alphabets—this is indeed observed in our experiments.

Yet another approach computing an edit score along all possible
alignments is the stochastic edit distance, and related methods [6].
The underlying model is based on a noisy channel. An input string
x—the reference string or code—is distorted by a noisy channel,
therefore producing an output string y that is a noisy transform of x.
The noisy channel is often modeled as a Markov model or a
transducer [6,41]. For these models, the probability of generating
string y from x, PðyjxÞ, can be computed thanks to a forward
recursion formula involving all possible ways of generating y, and
therefore all possible paths through the lattice. The scores
�logPðyjxÞ or �logPðxjyÞ can be considered as dissimilarity mea-
sures between x and y. This stochastic edit distance model is
refined in [47,4,41], where the local distances between the symbols
are estimated from sample data. A paragraph explaining the
relationships between stochastic edit distances and the sum-over-
paths approach appears at the end of Section 2.4. However, these

S. Garcı́a-Dı́ez et al. / Pattern Recognition 44 (2011) 1172–1182 1173



Download	English	Version:

https://daneshyari.com/en/article/531284

Download	Persian	Version:

https://daneshyari.com/article/531284

Daneshyari.com

https://daneshyari.com/en/article/531284
https://daneshyari.com/article/531284
https://daneshyari.com/

