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a b s t r a c t

This work addresses graph-based semi-supervised classification and betweenness computation in large,

sparse, networks (several millions of nodes). The objective of semi-supervised classification is to assign a

label to unlabeled nodes using the whole topology of the graph and the labeling at our disposal. Two

approaches are developed to avoid explicit computation of pairwise proximity between the nodes of the

graph, which would be impractical for graphs containing millions of nodes. The first approach directly

computes, for each class, the sum of the similarities between the nodes to classify and the labeled nodes of

the class, as suggested initially in [1,2]. Along this approach, two algorithms exploiting different state-of-

the-art kernels on a graph are developed. The same strategy can also be used in order to compute a

betweenness measure. The second approach works on a trellis structure built from biased random walks

on the graph, extending an idea introduced in [3]. These random walks allow to define a biased bounded

betweenness for the nodes of interest, defined separately for each class. All the proposed algorithms have

a linear computing time in the number of edges while providing good results, and hence are applicable to

large sparse networks. They are empirically validated on medium-size standard data sets and are shown

to be competitive with state-of-the-art techniques. Finally, we processed a novel data set, which is made

available for benchmarking, for multi-class classification in a large network: the U.S. patents citation

network containing 3M nodes (of six different classes) and 38M edges. The three proposed algorithms

achieve competitive results (around 85% classification rate) on this large network–they classify the

unlabeled nodes within a few minutes on a standard workstation.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Within-network semi-supervised classification has received a
growing focus in recent years (see [4,5] for a comprehensive survey
of the topic). In such a setting, one tries to assign a label to the
unlabeled nodes of a graph. Since the topology of the entire graph is
used (including the unlabeled nodes), the problem is semi-super-
vised. Despite the growing need for dealing with huge real-world
networks, few of the existing methods scale up to large graphs1 so
that semi-supervised classification on large graphs has become one

of the current central issues; see the survey [4, Section 6.3]. Indeed,
the techniques that scale well [6] are not always competitive when
compared to state-of-the-art graph-based metrics [7] such as the
regularized Laplacian kernel [8], the sum-over-paths (SoP) covar-
iance [9], the random walk with restart similarity and its normal-
ized version [10,11,7], or the Markov diffusion kernel [12]. A naive
application of these graph kernel-based approaches does not scale
well since it relies on the computation of a dense similarity matrix,
which usually requires a matrix inversion. Techniques approxi-
mating the inverse of the matrix usually require some strong
properties on the matrix, like the positive semi-definiteness [13],
and are only conceivable for medium-size graphs (up to 50,000
nodes)—for larger graphs, a dense similarity matrix cannot be
computed and stored into memory.

This paper tackles this problem with two different approaches.
The first approach is based on existing, competitive, kernels on a
graph, but it explicitly avoids the computation of the pairwise
similarities between the nodes (following an idea suggested by
Zhou et al. [1,2]). Indeed, as opposed to [11,14,9], Zhou et al. suggest
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to avoid computing each pairwise measure and solving a system of
linear equations instead. We design two iterative algorithms along
this approach, each based on a different state-of-the-art similarity
metric: the SoP covariance kernel [9] and the normalized random
walk with restart. This kernel on a graph was called regularized
commute-time kernel in [7] and is closely related to the modified
Laplacian matrix [15], as well as the random walk with restart
similarity [10,11]. As suggested initially in [1,2], the algorithms
directly approximate the sum of similarities to labeled nodes.
The second approach takes its inspiration from the randomized
shortest path framework of [16,9] and theD�walk algorithm based
on bounded random walks [3]. In this case, a random walk
betweenness [17], measuring how well a node is ‘‘in-between’’
each class, is derived from a trellis structure constructed from a
biased random walk on the graph.

1.1. Contribution and organization of the paper

This work makes three main contributions:

� It provides three algorithms to address within-network semi-
supervised classification tasks on large, sparse, directed graphs.
All these algorithms have a computing time linear in the number

of edges of the graph. Moreover, an algorithm allowing to
compute the SoP betweenness centrality [9] is also proposed.
� It validates the three proposed algorithms on eight medium-size

standard data sets and compares them to state-of-the-art
techniques. Their performances are shown to be competitive
in comparison with the other techniques. Results are also
computed on a standard large-scale data set [18].
� It introduces a novel benchmark data set: The U.S. patents

citation network, on which our three algorithms obtain com-
petitive results.

The subsequent part, Section 2, introduces the necessary back-
ground and notations. Then, in Section 3, two iterative algorithms
are derived from the assumptions of local and global consistency.
Further, Section 4 defines a biased bounded betweenness and
proposes a forward/backward algorithm to compute it. Section 5
applies our three algorithms to semi-supervised classification tasks
and compares the results to various state-of-the-art techniques.
A novel benchmark data set is also introduced: the U.S. patents
citation network on which our three algorithms are assessed.
Section 6 discusses the related work. Finally, the last part of the
article includes conclusions and remarks as well as further
extensions.

2. Background and notations

Consider a weighted directed graph or network, G, not neces-
sarily strongly connected, with a set of n nodes V (or vertices) and a
set of arcs E (or edges). Also consider a set of classes,L. It is assumed
that each node belongs to exactly one class—but the class label can
be unknown. Moreover, let us define an n-dimensional indicator
vector, yc, containing as entries 1 when the corresponding node
belongs to class c and 0 otherwise (in which case the node is
unlabeled or belongs to another class). To each arc linking node k

and ku a positive number ckku40, representing the immediate cost of
following this arc, is associated. The cost matrix C is the matrix
containing the immediate costs ckku as elements.

A random walk on this graph is defined in the standard way. In
node k, the random walker chooses the next arc to follow according
to transition probabilities representing the probability of jumping
from node k to node kuASðkÞ, the set of successor nodes (successors
S). These transition probabilities will be denoted as pkku with

kuASðkÞ. If there is no arc between k and ku, we simply consider
that ckku takes an arbitrary large value, denoted by 1; in this
case, the corresponding transition probability will be set to zero,
pkku ¼ 0. The natural random walk on this graph is defined in the
following way: it corresponds to a random walk with transition
probabilities

pkku ¼
1=ckkuP

kuASðkÞð1=ckkuÞ
ð1Þ

The corresponding transition matrix will be denoted as P. In
other words, the random walker chooses to follow an arc with a
probability proportional to the inverse of the immediate cost (apart
from the sum-to-one normalization), therefore locally favoring arcs
having a low cost. Instead of C, we might be given an adjacency
matrix A with elements akkuZ0 indicating the affinity between
node k and node ku. In this case, the corresponding costs could be
computed from ckku ¼ 1=akku and the transition probabilities asso-
ciated to each node are simply proportional to the affinities (and
normalized).

3. Kernel-based semi-supervised classification on large sparse
graphs

Three approaches for semi-supervised classification on large
sparse graphs are investigated in this paper. The first two approaches
(detailed in Sections 3.2 and 3.3) are based on approximating, or
bounding, standard kernel-based techniques, and are developed in
this section. They will therefore be referred to as approximate

approaches. The third approach, discussed in detail in Section 4, is
a generalization of the discriminative random walks classifier
ðD�walks, [3]).

3.1. Kernel-based classification

The approximate approaches are kernel-based and adopt the
simple following classification procedure (the consistency method),
initially proposed by Zhou et al. in [1,2] (see also [19–22]). Based on a
regularization framework for the optimization a loss function, this
classification procedure takes both available class labels and smooth-
ness into account. The resulting decision procedure is based on a
simple sum of similarities (each similarity being provided by an
element of the graph kernel matrix) with the labeled nodes (as
described in [1,2] for instance). This technique has been used with
other kernels than those initially proposed by Zhou et al. with
competitive results [9,7]. It corresponds to a simple alignment
between the kernel matrix and the class membership vector.

More precisely, suppose that we are given a meaningful
proximity matrix K (usually a graph kernel matrix; see e.g. [23])
providing similarities kij between each pair of nodes of the graph G.
For each node, its total similarity with nodes belonging to class c is
contained in the column vector sc

¼ Kyc. Then, each node is
assigned to the class showing the largest similarity; the predicted
class index is thus provided by argmaxc(s

c) for all nodes. In this
section, we propose to directly estimate this sum of similarities sc

for two different metrics, i.e. the sum-over-paths (SoP) covariance
[9] and the so-called regularized commute-time kernel [7], called in
this paper the normalized random walk with restart.

The SoP covariance kernel is related to other, already available,
kernels on a graph [23,12,7], such as, e.g., the commute-time kernel
[24,25]. The commute-time kernel is the natural kernel associated
to the commute-time distance (also called resistance distance
[26]), the average number of steps that a random walker, starting
from a given node, takes for entering another node for the first time
and afterward going back to the starting node. As explained in
[7,24], most of these kernels on a graph define a similarity measure
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