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In recent years, the spectral clustering method has gained attentions because of its superior performance.
To the best of our knowledge, the existing spectral clustering algorithms cannot incrementally update the
clustering results given a small change of the data set. However, the capability of incrementally updating
is essential to some applications such as websphere or blogsphere. Unlike the traditional stream data,
these applications require incremental algorithms to handle not only insertion/deletion of data points but
also similarity changes between existing points. In this paper, we extend the standard spectral clustering
to such evolving data, by introducing the incidence vector/matrix to represent two kinds of dynamics
in the same framework and by incrementally updating the eigen-system. Our incremental algorithm,
initialized by a standard spectral clustering, continuously and efficiently updates the eigenvalue system
and generates instant cluster labels, as the data set is evolving. The algorithm is applied to a blog data
set. Compared with recomputation of the solution by the standard spectral clustering, it achieves similar
accuracy but with much lower computational cost. It can discover not only the stable blog communities
but also the evolution of the individual multi-topic blogs. The core technique of incrementally updating
the eigenvalue system is a general algorithm and has a wide range of applications—as well as incremental
spectral clustering—where dynamic graphs are involved. This demonstrates the wide applicability of our

incremental algorithm.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Spectral clustering is notable both for its theoretical basis of graph
theory and for its practical success. It recently has many applications
in data clustering, image segmentation, web ranking analysis, and di-
mension reduction. Spectral clustering can handle very complex and
unknown cluster shapes in which cases the commonly used meth-
ods such as K-means and learning a mixture model using EM may
fail. It relies on analyzing the eigen-structure of an affinity matrix,
rather than on estimating an explicit model of the data distribution
[1,2]. In other words, the top eigenvectors of the graph Laplacian can
unfold the data manifold to form meaningful clusters [3].

However, nearly all existing spectral approaches are off-line al-
gorithms, and hence they cannot be directly applied to dynamic data
set. Therefore, to handle evolving data set, e.g., web data, there is a
need to develop efficient algorithms for inductive spectral clustering
to avoid expensive recomputation of the solution from the scratch.
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An intuitive approach is fixing the graph on the training data and
assigning new test points to their corresponding clusters by the near-
est neighbor in the training data [3]. However, the error will accu-
mulate quickly when more test points that are close to the cluster
boundaries are added. In this paper, we extend the spectral clus-
tering to handle evolving data by incrementally updating the eigen-
value system, which achieves more accurate results while requires
low computational cost.

There exist incremental clustering algorithms [4-6] that are de-
signed to handle only insertion of new data points. However, data
sets, such as web pages and blogs, require the incremental algo-
rithms to handle not only insertion/deletion of nodes but also sim-
ilarity changes between existing nodes. Fig. 1 gives a toy example
where a graph evolves from (a) to (b), with a similarity change of
0.5 added to the edge CD and a new node G connected to node F. In
Fig. 1(a), the graph should be cut at the edge CD; while in Fig. 1(b)
the cut edge is DE due to the similarity change on edge CD.

We handle the two kinds of dynamics in the same framework by
representing them with the incidence vector/matrix [7]. The Laplacian
matrix can be decomposed into the production of two incidence
matrixes. A similarity change can be regarded as an incidence vector
appended to the original incidence matrix. And an insertion/deletion
of a data point is decomposed into a sequence of similarity changes.
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Fig. 1. A toy example of evolving data. (a) Before evolution. (b) After evolution. The
dash lines are the cut edges.

Each newly added incidence vector (similarity change) may induce
increment to the Laplacian and degree matrixes, and we approximate
the corresponding increments of the eigenvalues and eigenvectors
by omitting the influence of the data points outside the spatial neigh-
borhood of the updating data points. In this way, the eigen-system
and the cluster labels are incrementally updated as data points are
inserted/deleted or similarity changes occur.

This approach is useful to the applications where the similarity
matrix is sparse and where both the data points and their similarities
are dynamically updated. An example is the community discovery
of the web-blogs. The key observation is that a link reference from
an entry of a source blog to an entry of a destination blog serves as
an endorsement of the similarity between the two blogs. A graph
can be constructed based on the similarities between the web-blogs,
and communities (clusters) can be discovered by spectral clustering.
However, web-blogs are evolving, and new blogs and new links
are added or removed every day. Therefore, the standard spectral
clustering cannot be used to online monitor the web-blogs because
of the huge number of blogs and, in turn, of the high computational
cost. For sparse similarity matrix, Lanczos method [8] may save much
cost to solve the eigenvalue problem. But it is still impractical to
recompute the solution from the scratch at each time instance the
data set is updated, especially when the web-blogs are huge. On the
contrary, our approach applied to the web-blog data achieves similar
accuracy but with much lower computational cost, compared with
recomputation by the standard spectral clustering.

It is worth to note that the core idea of our incremental clustering
is dynamic updating of the (generalized) eigenvalue system. Actually
it is a general algorithm that can also be applied to many other prob-
lems involving dynamic graphs. These problems require to solve the
(generalized) eigenvalue system at each time the graph is updated.
In Section 6, three related problems are stated and solved by this
algorithm. The first problem is to choose edges from a candidate set
to maximize the algebraic connectivity of a graph. Algebraic connec-
tivity is the second smallest eigenvalue of the graph Laplacian that
measures how well connected the graph is [9]. The second problem
is to find the most significant edge of a graph. The last problem is
related to linear embedding. These problems demonstrate the wide
applicability of our algorithm.

This paper is an extension of our previous work [10]. Our previ-
ous work presented a basic algorithm to efficiently update the (gen-
eralized) eigenvalue system given a small change of the data set. It
approximates the increments of eigenvalues and eigenvectors with
first order error. Based on our previous work, this paper gives a sec-
ond order approximation for the increments by alternately refining
the eigenvalues and eigenvectors, respectively. Then more experi-
ments are carried to show that the refinement algorithm achieves

significant improvement over our previous work. In this version, our
algorithm is also applied to some other related problems involving
dynamic graphs, which demonstrates the wide applicability of our
incremental algorithm. Besides these, discussions on the number of
clusters, more related work, and some other content are added in
this paper to complement the previous version. The contributions of
our work are summarized as follows:

1. We declare two kinds of dynamics existing in the evolving data:
similarity change and insertion/deletion of data points. And then
the incidence vector/matrix is introduced to represent the two
dynamics so that our incremental clustering can handle them in
the same framework.

2. Based on (but not limited to) normalized cut, the incremental
spectral clustering is formulated as the problem of dynamically
updating the eigen-system given a small similarity change. We
give a closed-form solution to the eigenvalue increment with
first order error and an approximate solution to the eigenvector
increment.

3. To improve the accuracy of the increments, we propose an itera-
tive algorithm that alternately refines the eigenvalues and eigen-
vectors. It approximates the increments with the second order
error.

4. Our algorithm is also applied to solve some other related prob-
lems involving dynamic graphs. This demonstrates the wide ap-
plicability of our algorithm.

5. We carry intensive experiments on the real blog data set. The in-
cremental approach can discover not only the stable blog commu-
nities but also the evolution of the individual multi-topic blogs,
while the computational cost is very low.

This paper is organized as follows. In the next section we focus
on related work. Section 3 describes the basic formulations. Section
4 presents the incremental algorithm for spectral clustering. Then
the algorithm is discussed in Section 5. And it is also applied to some
other related problems in Section 6. Section 7 gives the experimental
results. The paper is concluded in Section 8.

2. Related work

To the best of our knowledge, our approach is the first work
accomplishing the task of incremental spectral clustering that can
handle not only insertion/removal of data points but also similarity
changes. But there is still a large volume of literature related to our
work, including topics on spectral methods, stream data, incremental
PageRank, evolutionary clustering, and time series data.

The spectral method is where our work starts. Our work is
based on normalized cut [2] but can be extended, without major
modifications, to many other spectral methods involving solving
eigenvalue systems. Spectral clustering evolved from the theory of
spectral graph partitioning, an effective algorithm in high perfor-
mance computing [11]. Recently there is a huge volume of literature
on this topic. Ratio cut objective function [12,13] naturally cap-
tures both mincut and equipartition, the two traditional goals of
partitioning. This function leads to eigenvalue decomposition of
the Laplacian matrix. Shi and Malik [2] proposed a normalized cut
criterion that measures both the total dissimilarity between the dif-
ferent groups as well as the total similarity within the groups. The
criterion is equivalent to a generalized eigenvalue problem. Ding
et al. [14] presented a min-max cut and claimed that this criterion
always leads to a more balanced cut than the ratio cut and the
normalized cut. Unlike the above approaches, Ng et al. [1] proposed
a multi-way clustering method. The data points are mapped into a
new space spanned by the first k eigenvectors of the normalized
Laplacian. Clustering is then performed with traditional methods
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