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Segmentation is an important step to obtain quantitative information from tomographic data sets. How-
ever, it is usually not possible to obtain an accurate segmentation based on a single, global threshold.
Instead, local thresholding schemes can be applied that use a varying threshold. Selecting the best local
thresholds is not a straightforward task, as local image features often do not provide sufficient informa-
tion for choosing a proper threshold.
Recently, the concept of projection distance was proposed by the authors as a new criterion for evaluating
the quality of a tomogram segmentation [K.J. Batenburg, J. Sijbers, Automatic threshold selection for
tomogram segmentation by reprojection of the reconstructed image, in: Computer Analysis of Images
and Patterns, in: Lecture Notes in Computer Science, vol. 4673, Springer, Berlin/Heidelberg, 2007, pp.
563–570.]. In this paper, we describe how projection distance minimization (PDM) can be used to select
local thresholds, based on the available projection data from which the tomogram was initially computed.
The results of several experiments are presented in which our local thresholding approach is compared
with alternative thresholding methods. These results demonstrate that the local thresholding approach
yields segmentations that are significantly more accurate compared to previously published methods, in
particular when the initial reconstruction contains artifacts.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Tomography is a powerful technique for three-dimensional imag-
ing of physical objects, without the need to take the object apart.
Projection images of the object are acquired along a range of angles,
while rotating around the object [1]. An image of the object (a to-
mogram) is then reconstructed from the series of projection images.
Besides its well-known applications in medical imaging, tomography
is also an important tool in materials science, microbiology and in
industrial applications. In this paper, we focus on tomography of ob-
jects that consist of a single material (or tissue, in the medical case).
An example of such an object can be seen in Fig. 1, which shows a
reconstructed slice of a mouse femur, where the trabecular bone has
a rather complex morphology. Such images are commonly used in
biomedical bone research [2–5]. Even though the bone density is not
perfectly constant, it can still be approximated by a constant den-
sity fairly well. An example of an industrial application is the recon-
struction of raw diamonds from X-ray projections [6]. If the diamond
does not contain any impurities, it consists of a single material of
constant density. In materials science, electron tomography is used
to study the morphology of homogeneous nanoparticles [7,8].
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Tomographic reconstructions, which are generally gray-scale im-
ages, are often segmented as to extract quantitative information,
such as the shape or volume of image objects. Such segmentations
are usually performed by global or local thresholding [2–5,7,8]. How-
ever, the process of threshold selection is often somewhat arbitrary.
A variety of classical algorithms exist for selecting “optimal” thresh-
olds with respect to various optimality measures [9]. Global thresh-
olds are typically selected from the histogram of the image [10–13].

To our knowledge, all previously proposed thresholding methods
only use the tomographic reconstruction to select the threshold,
while discarding the information contained in the projection data.
A reconstructed image, however, generally suffers from various re-
construction artifacts. In materials sciences, for example, where the
projection images are acquired using an electron microscope, it is
usually not possible to sample the full range of projection angles,
which leads to so-called missing wedge artifacts in the reconstruc-
tion. Also, if the projection of the object falls outside the detector,
the reconstruction will suffer from truncation artifacts. To reduce
the impact of these artefacts in the selection of the thresholds,
Batenburg and Sijbers proposed a new approach for global threshold
selection that makes use of the available tomographic projection
data [1,14]. By reprojecting the segmented volume, the norm of the
difference between the projections of the current segmentation and
the measured projection data, called the projection distance, can be
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Fig. 1. Reconstructed slice of a mouse femur.

computed. This yields a quantitative measure of the quality of the
segmentation. By minimizing the difference between the computed
and measured projections (projection distance minimization, or PDM),
an optimal threshold can be computed. It was demonstrated in [1],
that PDM leads to a significant improvement in segmentation accu-
racy, compared to histogram-based methods.

However, the capabilities of global threshold selection methods
are limited by the maximum accuracy that can be obtained using
global thresholding. If the tomogram exhibits variations in the in-
tensity of certain image features, global thresholding can never lead
to an accurate segmentation. For example, thick structures typically
tend to be brighter than very thin structures in a tomogram, even if
both structures consist of the same material in the original object. To
account for local image variations, local thresholding methods were
proposed. Abutaleb developed a local thresholding method based on
the joint (two-dimensional) entropy of a pixel neighborhood [15,16].
White and Rohrer developed a nonlinear, local thresholding method
in which the gray value of the pixel is compared with the average
of the gray values in a small neighborhood [17]. Similarly, the local
thresholding method of Niblack adapts the local threshold according
to the local mean and standard deviation over a sliding window [18].
Eikvil et al. developed a thresholding method in which a large win-
dow, with a small window positioned at its center, is moved across
the image, and each pixel inside the small window is labeled on the
basis of the clustering of the pixels inside the large window [19].
Blayvas et al. proposed an adaptive binarization method where the
threshold is determined by interpolation of the image gray levels at
points where the image gradient is high [20].

These adaptive thresholdingmethods that use a varying threshold
for different regions of the image lead to better results than global
thresholding in some cases. However, they suffer from the same
drawback as global thresholding algorithms in the sense that no
objective criterion for the segmentation quality is available if only the
information from the reconstructed image is used for segmentation.
Moreover, in cases where reconstruction artifacts are not negligible,
most adaptive thresholdingmethods perform evenworse than global
thresholding methods since adaptive thresholding techniques are
more vulnerable to local variations originating from these artifacts.

In this paper, we propose an extension of the projection-based
threshold selection method from [1], that uses a locally varying
threshold field, instead of a single global threshold. The same opti-
mization criterion, PDM, is now used to find an “optimal” thresh-
old field. The threshold field is represented on a square grid that
is coarser than the pixel grid of the tomogram. The thresholds for
pixels that do not coincide with grid points in the coarse grid are
computed by bilinear interpolation. Computing the threshold field
for which the projection distance is minimal appears to be compu-
tationally hard. We describe how a minimum of the projection dis-
tance can be computed efficiently for the case that the threshold is

Fig. 2. Basic setting of transmission tomography.

only allowed to vary for a single grid point in the coarse grid, while
keeping the threshold values fixed for the remaining grid points. By
iterating this procedure several times for all coarse grid points, a lo-
cal minimum of the projection distance is reached. To avoid early
convergence to a local minimum that is far away from the global
minimum, a stochastic algorithm is proposed which is capable of
escaping from local minima before finally converging.

This paper is structured as follows. In Section 2, the local thresh-
olding problem for tomograms is introduced and our local thresh-
olding approach based on PDM is described. Simulation experiments
have been performed, comparing the result of local thresholding
based on PDM with alternative local thresholding methods and with
global thresholding based on PDM [1]. A description of these exper-
iments and their results is given in Section 3. Section 4 concludes
the paper.

2. Method

In what follows, we will assume that a reconstruction, containing
noise and possible reconstruction artifacts, from an originally binary
image is to be segmented. For simplicity reasons, we will restrict
ourselves to two-dimensional tomograms. All concepts can be gen-
eralized to a three-dimensional setting in a straightforward manner.

2.1. Tomography setting

The gray value image that we want to segment is a tomographic
reconstruction of some unknown homogenous object, which can be
represented by a function f : R2 → {0, 1}. We assume that the sup-
port of f (i.e., the set {(x, y) ∈ R2 : f (x, y)�0}) is included in a circle
of radius R. Projections are measured along lines l�,t = {(x, y) ∈ R2 :
x cos� + y sin� = t} where � represents the angle between the line
and the y-axis and t represents the coordinate along the projection
axis; see Fig. 2.

The projection function P� : R → R of f for projection angle � is
defined as

P�,f (t) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)�(x cos� + y sin� − t) dxdy. (1)

with �(·) denoting the Dirac delta function. The function P�,f (t) is
called the Radon transform of f . Usually, the line projections P�,f (t)
cannot be measured as continuous functions. Instead, the line pro-
jections are measured in a discrete set of t-values as well in a discrete
set of projection angles �.
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