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The spectrum of a graph has been widely used in graph theory to characterise the properties of a graph
and extract information from its structure. It has also been employed as a graph representation for pattern
matching since it is invariant to the labelling of the graph. There are, however, a number of potential
drawbacks in using the spectrum as a representation of a graph. Firstly, more than one graph may share
the same spectrum. It is well known, for example, that very few trees can be uniquely specified by their
spectrum. Secondly, the spectrum may change dramatically with a small change structure.
There are a wide variety of graph matrix representations from which the spectrum can be extracted.
Among these are the adjacency matrix, combinatorial Laplacian, normalised Laplacian and unsigned
Laplacian. Spectra can also be derived from the heat kernel matrix and path length distribution matrix.
The choice of matrix representation clearly has a large effect on the suitability of spectrum in a number
of pattern recognition tasks.
In this paper we investigate the performance of the spectra as a graph representation in a variety of
situations. Firstly, we investigate the cospectrality of the various matrix representations over large graph
and tree sets, extending the work of previous authors. We then show that the Euclidean distance be-
tween spectra tracks the edit distance between graphs over a wide range of edit costs, and we analyse
the accuracy of this relationship. We then use the spectra to both cluster and classify the graphs and
demonstrate the effect of the graph matrix formulation on error rates. These results are produced using
both synthetic graphs and trees and graphs derived from shape and image data.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The spectrum of a graph has been widely used in graph theory to
characterise the properties of a graph and extract information from
its structure. It has also been employed as a graph representation for
pattern matching tasks [1--3]. Its use has not gained wide acceptance
as a representation for matching and comparison of graphs. There
are twomain reasons for this; firstly, more than one graphmay share
the same spectrum. Secondly, the spectrummay change dramatically
with a small change structure. While these factors appear to count
against the spectrum, they may or may not be important in practical
graph matching problems.

Graph structures have been used to represent structural and rela-
tional arrangements of entities in many vision problems. Some of the
earliest attempts to do so are due to Fischler and Elschlager [4], and
Barrow and Burstall [5]. More recently, for example, shock graphs
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have been used to represent shape [6]. The key problem in utilising
graph representations lies in measuring their structural similarity.
This is a difficult problem because there is no explicit labelling of
the parts, and typically correspondences must be established before
similarity can be assessed. There are many methods in the literature
which examine the problem of finding correspondences between
graphs [7--9]. As an example, Sanfeliu and Fu [10] employed the con-
cept of graph edit distance, giving separate edit costs for relabeling,
insertion and deletion on both nodes and edges. A search is neces-
sary to locate the set of operations which have minimal cost. More
recently, Bunke [11,12] has established a relationship between the
minimum graph edit distance and the size of the maximum common
subgraph. The graph edit distance therefore provides a well-defined
way of measuring the similarity of two graphs.

Spectral graph theory provides another approach to the prob-
lem of graph similarity. This approach is based on a branch of
mathematics that is concerned with characterising the structural
properties of graphs using the eigenvectors and eigenvalues of the
adjacency matrix or the closely related Laplacian matrix (the degree
matrix minus the adjacency matrix) [13]. One of the well-known
successes of spectral graph theory in computer vision is the use of
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eigenvector methods for grouping via pairwise clustering. Examples
include Shi and Malik's [14] iterative normalised cut method which
uses the Fiedler (i.e. second smallest) eigenvector for image segmen-
tation and Sarkar and Boyer's use of the leading eigenvector of the
weighted adjacency matrix [15]. Graph spectral methods have also
been used for correspondence analysis. For example, Umeyama's
method [16] allows the matching of two graphs of equal size by
using the eigendecompositions of the adjacency matrices. Kosinov
and Caelli [17] have used properties of the spectral decomposition
to represent graphs and Shokoufandeh et al. [1] have used eigen-
values of shock graphs to index shapes. Wilson and Hancock have
previously shown [18,19] how permutation invariant polynomials
can be used to derive features which describe graphs and make full
use of the available spectral information.

The spectrum of a graph (i.e. the set of eigenvalues) is generally
considered to be too weak to be a useful tool for representing graphs,
mainly due to the result of Schwenk [20] who showed that for trees
at least, a sufficiently large tree nearly always has a partner with the
same spectrum. Trees therefore cannot be uniquely defined by the
spectrum. However, it is not known to what extent this is a problem
in practice since Schwenk's work does not reveal how 'sufficiently
large' actually it is. The situation for graphs is even less clear, as no
similar result is known. Computational simulations by Haemers et al.
[21] have shown that the fraction of cospectral graphs reaches 21%
at 10 vertices (for the adjacency matrix) and is less for 11 vertices,
which is the limit of their simulations. While far from conclusive,
their results suggest that for small graphs, the fraction of cospectral
graphs is small for some representations, and at least at 11 vertices,
the trend is decreasing.

The graph spectrum is derived from a matrix representation of
the graph, and is highly dependent on the form of the matrix. A
number of alternative matrix representations for graphs have been
proposed in the literature; these include the adjacency matrix, Lapla-
cian and normalised Laplacian. The spectrum of all of these repre-
sentations may be used to characterise the graph, and each may re-
veal different graph properties. Some of these representations may
be more stable to perturbations in the graph. In this paper we anal-
yse these matrices and quantify the effect the matrix representation
has on the stability and representational power of the eigenvalues of
the graph. We also examine the problem of cospectrality of graphs.
In Section 2, we discuss the spectral decomposition of a graph.
Section 3 describes the standard matrix representations of graphs.
In Section 4, we investigate the cospectrality properties of these ma-
trices with respect to trees and general graphs. In Section 5 we look
at the relationship between graph spectra and the edit distance be-
tween graphs. Finally, Section 6 details the experiments aimed at
measuring the utility of these representations in more practical sit-
uations such as clustering and classification.

2. Spectral decomposition of the representation matrix

The graphs under consideration here are undirected, unweighted
graphs. While we do not consider weighted graphs here, these ideas
are straightforwardly extended to such graphs. We denote a graph
by G = (V, E) where V is the set of nodes and E ⊆ V × V is the set of
edges. The degree of a vertex u is the number of edges incident on the
vertex u and is denoted du. A matrix representation of the graph is a
|V | by |V | matrix X, such that an element Xij of this matrix represents
some property of the pair of vertices i and j. Diagonal elements Xii
encode information about the vertex i only. A simple example is the
adjacency matrix A, where Aij is 1 when there is an edge between
i and j, and zero otherwise. We discuss specific representations in
more detail in the next section.

The spectrum of the graph is obtained from the matrix rep-
resentation using the eigendecomposition. Let X be the matrix

Fig. 1. A pair of graphs with the same adjacency matrix spectrum [22].

representation in question. Then the eigendecomposition isX=���T

where � = diag(�1, �2, . . . , �|V |) is the diagonal matrix with the
ordered eigenvalues as elements (ordered in terms of magnitude,
with the largest first) and � = (�1|�2| . . . |�|V |) is the matrix with
the ordered eigenvectors as columns. The spectrum is the set of
eigenvalues

s = {�1, �2, . . . , �|V |}
with

�1��2� · · · ��|V |
One of the key problems with graph comparison is that the vertices
are not labelled or ordered. As a result, the vertices may appear in
different orders in two graphs under comparison, even if the graphs
are isomorphic. Usually, correspondences between the vertices in the
two graphs must be established before similarity can be measured.
Clearly, the vertex ordering affects the matrix representation of the
graph. If P is a permutation matrix which re-orders the vertices, then

L′ = PLPT

represents the same graph as L.
The spectrum is particularly useful as a graph representation be-

cause it is invariant under the similarity transform PLPT. In other
words, two isomorphic graphs will have the same spectrum. This is
the motivation for using the spectrum as a graph feature. As noted
earlier, the converse is not true, two non-isomorphic graphs may
share the same spectrum. Fig. 1 shows an example of two such
graphs which have the same adjacency matrix spectrum from [22].
However, the spectrum may be used as an approximate measure of
graph similarity. One of the aims of this paper is to establish how
useful the spectrum is as such a measure.

The spectral distance between graphs is simply the Euclidean
distance between the spectra.

ds(G1, G2) =
√∑

i

(s(1)
i

− s(2)
i

)2

When the spectra are of different sizes, then the smaller may be
padded with zero values (while maintaining the magnitude order-
ing). This is equivalent to adding disjoint vertices to the smaller
graph to make both graphs the same cardinality.

3. Standard graph representations

In this section, we review the properties of some standard graph
representations and their relationships with each other.

3.1. Adjacency matrix

The most basic matrix representation of a graph is using the
adjacency matrix A for the graph. This matrix is given by

A(u, v) =
{
1 if (u, v) ∈ E

0 otherwise
(1)

Clearly, if the graph is undirected, the matrix A is symmetric. As a
consequence, the eigenvalues of A are real. These eigenvalues may
be positive, negative or zero and the sum of the eigenvalues is zero.
The eigenvalues may be ordered by their magnitude and collected
into a vector which describes the graph spectrum.
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