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Abstract

In classifying high-dimensional patterns such as stellar spectra by a Gaussian classifier, the covariance matrix estimated with a small-number
sample set becomes unstable, leading to degraded classification accuracy. In this paper, we investigate the covariance matrix estimation problem
for small-number samples with high dimension setting based on minimum description length (MDL) principle. A new covariance matrix
estimator is developed, and a formula for fast estimation of regularization parameters is derived. Experiments on spectrum pattern recognition
are conducted to investigate the classification accuracy with the developed covariance matrix estimator. Higher classification accuracy results

are obtained and demonstrated in our new approach.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Spectrum recognition has a wide range of applications, such
as chemical element identification, stellar classification, and
matter structure analysis. For spectral data, the number of vari-
ables (wavelengths) is much higher than that of training sam-
ples; therefore, spectral data are severely ill-posed. Due to such
high dimensionality, the common multivariate classification
methods of linear discriminant analysis (LDA) and quadratic
discriminant analysis (QDA) cannot be directly applied because
of the matrix singularity problem [1].

Spectrum recognition is usually a high-dimensional small
sample set classification problem. Generally speaking, classifi-
cation has two aspects: supervised classification (discrimination
or simply classification) and unsupervised classification (clus-
tering). In recent years, several classification algorithms have
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been developed to partition a data set into pre-defined classes.
When the data are viewed as arising from two or more clusters
mixed in varying proportions, we can use the finite Gaussian
mixture distribution to analyze the data set. The Gaussian mix-
ture distribution analysis method has been employed widely in
a variety of important practical situations, where the likelihood
approach to the fitting of Gaussian mixture models has been
utilized extensively [2-5].

When classifying data with the Gaussian mixture model,
the mean vector and covariance matrix of each component are
not known in advance, and they have to be estimated from
the given data set. While a large-size data set is desirable for
estimating the parameters more accurately, in the real world,
often only a small-size data set can be obtained because of some
restriction, e.g., high cost in collecting large-size data sets. For
a relatively small-number sample data set, if the dimension d of
variable x is comparable to the number of training samples 7
in class j, the problem may become poorly posed. Worse, if the
number 7 of training samples is less than the dimensionality,
the problem becomes ill-posed. In this case, not all parameters
can be properly estimated, and the classification accuracy is
degraded.
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There are two possible solutions for this kind of problem:
one is dimensionality reduction [6,7], and the other is regu-
larization [1,8]. Regularization is the procedure of allowing
parameters bias toward what are thought to be more plausi-
ble values, which reduces the variance of the estimates at the
cost of introducing bias. Besides the regularization techniques
can be used to sparse nonparametric density estimation in high
dimension case [9], the regularization techniques have been
highly successful in classifying small-number data with some
heuristic approximations [1,8,10,11]. However, these methods,
such as regularized discriminant analysis (RDA) [10], require
users to select regularization parameters (or called model) with
some statistical techniques like leave-one-out cross-validation
[11-14], which is computation-expensive. Furthermore, a re-
cent study shows that cross-validation performance is not al-
ways good in the selection of linear models [15] in some cases.
Therefore, it is worthy to further investigate this problem.

Originally proposed as an estimation criterion by Rissanen
[16,17], the minimum description length (MDL) principle can
be applied to universal coding, linear regression, and density
estimation problems. The central idea of this principle is to rep-
resent an entire class of probability distributions as models by
a single “universal” representative model, such that it would be
able to imitate the behavior of any model in the class. The best
model class for a set of observed data is the one whose rep-
resentative permits the shortest coding of the data. The MDL
estimates of both the parameters and their total number are
consistent; i.e., the estimates converge and the limit speci-
fies the data generating model [17]. The codelength! criterion
of MDL involves in the Kullback—Leibler divergence [18,19].
MDL principle has a wide applications, such as clustering prob-
lem [20]. In this paper, based on the MDL principle with the
mixture model analysis, we present the results of investigating
covariance matrix estimation and regularization parameter se-
lection in the Gaussian classifier for the small-sample set with
high-dimension classification problem.

2. Theoretical background
2.1. Classification with finite Gaussian mixture model

In pattern recognition problem, we have a set of data sam-
ples, each consisting of measurements on a set of variables with
associated labels, the class types. They are used as exemplars in
the classifier design [21]. In clustering we need to estimate prior
probability and posterior probability in the classifier design. If
these probabilities are known, it becomes a classification prob-
lem. So clustering is more general than classification in the
mixture model analysis case. Let us consider the general case
first.

The data points D = {x,-}fv= | to be classified are assumed to
be samples from a mixture of k Gaussian densities with joint
probability density of which the mathematical expressions are

L' A term codelength is just another way to express a probability distri-
bution or a model.

shown as follows:
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is a general multivariate Gaussian density function, X denotes
a random vector, d is the dimension of the x, and parameter
O={oj,m;, X, }’;: | is a set of finite mixture model parameter
vectors. Here a; is the prior probability, m; is the mean vector,
and X; is the covariance matrix of the jth component. Based
on the given data set, these parameters can be estimated by the
maximum likelihood (ML) method with expectation-maximum
(EM) algorithm [22,23].

In the Gaussian mixture model case, the Bayesian decision
rule is applied to classify the vector x into class j with the largest
posterior probability. The posterior probability P(j|x, @) rep-
resents the probability that the sample x belongs to class j. We
use Bayesian decision j* = arg max; P(j|x, @) to classify x
into class j*. The probability functions P(j|x, ®) are usually
unknown and have to be estimated from the training samples.
With the ML method estimated parameter ©, the posterior
probability can be written in the form

&J'G(X, fﬁj,/ij)
p(x, 0)
j=1,2,... k (3)
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Taking the logarithm to the above equation and omitting the
common factors of the classes, the classification rule becomes

jr=argmind;(x), j=12,...,k 4)
J

with

d;() = (x —m)TE; (x — i) + In[Ej] - 2In%;. (5)

This equation is often called the discriminant function for the
Jjth class in the literature [1]. Furthermore, if the prior probabil-
ity ’o?j is the same for all classes, the term 2 ln’o?j can be omitted
and the discriminant function reduces to a simpler form [24].

2.2. Covariance matrix estimation

When the sample number is small, the sample-based esti-
mation of class-specific covariance matrix becomes inaccurate,
resulting in lowered classification accuracy. To solve this prob-
lem, several techniques are proposed, such as LOOC as well
as its extensions bLOOC1 and bLOOC2 [11-14]. LOOC was
proposed by Hoftbeck and Landgrebe [11], who examine the
diagonal sample covariance matrix, the diagonal common co-
variance matrix, and some pair-wise mixtures of those matrices.
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