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Abstract

It is well known that the error probability, of the binary Gaussian classification problem with different class covariance matrices, cannot
be generally evaluated exactly because of the lack of closed-form expression. This fact pointed out the need to find a tight upper bound for
the error probability. This issue has been for more than 50 years ago and is still of interest. All derived upper-bounds are not free of flaws.
They might be loose, computationally inefficient particularly in highly dimensional situations, or excessively time consuming if high degree
of accuracy is desired. In this paper, a new technique is developed to estimate a tight upper bound for the error probability of the well-known
binary Gaussian classification problem with different covariance matrices. The basic idea of the proposed technique is to replace the optimal
Bayes decision boundary with suboptimal boundaries which provide an easy-to-calculate upper bound for the error probability. In particular,
three types of decision boundaries are investigated: planes, elliptic cylinders, and cones. The new decision boundaries are selected in such a
way as to provide the tightest possible upper bound. The proposed technique is found to provide an upper bound, tighter than many of the
often used bounds such as the Chernoff bound and the Bayesian-distance bound. In addition, the computation time of the proposed bound
is much less than that required by the Monte-Carlo simulation technique. When applied to real world classification problems, obtained from
the UCI repository [H. Chernoff, A measure for asymptotic efficiency of a hypothesis based on a sum of observations, Ann. Math. Statist. 23
(1952) 493–507.], the proposed bound was found to provide a tight bound for the analytical error probability of the quadratic discriminant
analysis (QDA) classifier and a good approximation to its empirical error probability.
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1. Introduction

It is well known that there is no closed-form expression for
the error probability of the binary Gaussian classification prob-
lem when the covariance matrices of the two class are different.
Though the attempts of finding a tight upper bound for this error
probability dates back to more than 50 years ago [1], it has been
found that this problem is still of interest in many applications
in different research areas. For example, in pattern recognition
applications, the quadratic discriminant analysis (QDA) classi-
fier has been found to provide powerful classification perfor-
mances in some pattern recognition applications [2] despite its
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simplicity in comparison with other classification techniques.
Since the QDA is based on the assumption that the class condi-
tional densities are Gaussian, there have been some attempts to
give a tight upper bound for the error probability of the QDA
classifier [3]. In addition, estimates of this error probability has
been used recently as a feature selection criterion [4]. In digi-
tal communication, there have been many attempts to estimate
an upper bound for the error probability of different commu-
nication systems such as non-coherent coded modulation [5]
and code division multiple access [6,7] when the communi-
cation channel suffers from an additive white Gaussian noise
(AWGN), slow fading, or rapid fading. It can be shown that
estimating the detection error probability in all these cases is
equivalent to the considered Gaussian classification problem.
In addition, in some radio astronomy and sonar applications,
both the signal and the noise are best modelled as Gaussian
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random processes since signals are perturbed by propagation
through turbulent media [8]. Hence, the problem of evaluating
the detection-error probability is also equivalent the considered
Gaussian classification problem.

Because of the popularity of this problem, there have been
many attempts to upper bound this error probability. The old-
est and most known bounds for this error probability are the
Chernoff bound [1] and the Bhattacharyya bound [9]. Though
these bounds are easy to calculate, they are found to be sig-
nificantly loose in many problems. Tighter error bounds have
also been proposed: the equivocation bound [10]; the Bayesian
distance bound [11]; the sinusoidal bound [3]; and the expo-
nential bound [12]. However, again, there is no closed-form
expressions for these bounds and numerical integrations may
be necessary. Thus, evaluation of these bounds may well be
inefficient for problems with high dimensionality because they
require a great deal of computations.

A third approach to approximate the error probability is
through the generation of a relatively large number of random
instances that follow the distribution of each class. The gener-
ated samples are then classified according to the Bayesian deci-
sion rule. The error probability is simply estimated as the ratio
of the number of misclassified samples to the total number of
samples. This technique in the literature is known as the Monte-
Carlo simulations [13]. Amazingly, the complexity of this tech-
nique does not grow with increasing the dimensionality of the
data. However, the accuracy of the obtained estimate is expo-
nentially proportional to the number of the generated points. In
particular, in order to increase the accuracy of the obtained esti-
mate to one digit of precision, the number of generated samples
should be increased by two orders of magnitude. Therefore,
the estimation of the error probability using this technique is
time consuming due to the large number of samples required
for a sufficient degree of accuracy. In order to overcome with
this deficiency, some improvement has been proposed to the
conventional Monte-Carlo simulation technique such as impor-
tance sampling [13]. Though these methods have been applied
successfully in some problems, it is difficult to apply them in
some complex problems such as Viterbi decoding [14].

In this paper, a new method is proposed for the estimation of
a tight upper bound for the error probability of the binary Gaus-
sian classification problem. This method has the advantages of
providing good approximation to the error probability with a
relatively small computation time. The basic idea is to replace
the Bayesian boundary with sub-optimal decision boundaries.
In particular, three types of decision boundaries are considered:
planes, elliptic cylinder, and cones. The main motivation be-
hind this replacement is the relative easiness of calculating the
error probability when these surfaces are used as classification
boundaries. At the same time, these boundaries are suboptimal
in the sense that classification using them must result in infe-
rior classification performance than that provided by the opti-
mal Bayesian decision rule. Hence, these boundaries provide
an upper bound for the true error probability. However, in or-
der not to obtain a loose upper bound, their parameters should
be optimized in such a way to obtain the least possible upper
bound.

The rest of this paper is organized as follows. In Section 2, the
binary Gaussian classification problem is briefly reviewed with
the introduction of known error bounds. The possible shapes
of the optimal Bayesian decision boundary are discussed in
Section 3. The proposed error upper bound is described in
Section 4. Comparative performance evaluation of proposed
bounding technique with other selected techniques is provided
in Section 5. Finally, concluding remarks are mentioned in
Section 6.

2. The binary Gaussian classification problem: A brief
review

The binary Gaussian classification problem is generally for-
mulated as follows. Given a vector, x ∈ Rd , which belongs to
one of either two possible classes: C1 or C2. It is required to
determine which one of the following two hypotheses is more
likely to occur:

H1 : x comes from the first class, C1.

H2 : x comes from the second class, C2.

It is usually assumed that data vectors belonging to each class
Ci , i = 1, 2 follow a certain distribution p(x|Ci ), i = 1, 2.
Usually, these distributions are incompletely known and the
unknown parameters are estimated based on a set of train-
ing data. In this paper, it will be assumed that the amount of
the training data is enough to estimate the unknown param-
eters with a sufficient degree of accuracy. Moreover, it will
be assumed that the distributions take the form a multivariate
normal distribution, i.e.,

p(x|Ci ) = 1
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where μi and �i are the mean vector and the covariance matrix
of Ci . According to the Bayesian decision theory, the optimal
decision rule is given as

P(C1)p(x|C1)
H2
≶
H1

P(C2)p(x|C2). (2)

Substituting Eq. (1) into Eq. (2) and performing some manip-
ulations, the optimal Bayes decision rule for the Gaussian case
is given by
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A classification error occurs if a data vector x belongs to
one class but falls in the decision region of the other class.
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