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Abstract

In this paper we propose a general feature partitioning framework to PCA computation and raise issues of cross-sub-pattern correlation,
feature ordering dependence, selection of sub-pattern size, overlap of sub-patterns and selection of principal components. These issues are
critical to the design and performance of feature partitioning approaches to PCA computation. We show several open issues and present a novel
algorithm, SubXPCA which proposes a solution to the cross-sub-pattern correlation issue in the feature partitioning framework. SubXPCA
is shown to be a general technique since we derive PCA and SubPCA as special cases of SubXPCA. We show SubXPCA has theoretically
better time complexity as compared to PCA. Comprehensive experimentation on UCI repository data and face data sets (ORL, CMU, Yale)
confirms the superiority of SubXPCA with better classification accuracy. SubXPCA not only has better time performance but is also superior
in its summarization of variance as compared to SubPCA. SubXPCA is shown to be robust in its performance with respect to feature ordering

and overlapped sub-patterns.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Principal component analysis (PCA) is one of the widely
used techniques for dimensionality reduction with widespread
applications to pattern recognition, exploratory data anal-
ysis, etc., [1-4]. PCA is concerned with summarizing the
variance—covariance structure using a few linear combinations
of the original set of d variables (features). Although d features
are required to reproduce the total data variability, often much
of this variability can be accounted for by a small number, m
(m <d), of the principal components (PCs). To approximate
the original data, a reduced set of m PCs is used. Those m are
the uncorrelated linear combinations with the first m largest
variances given by corresponding eigenvalues [4].
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The usefulness and hence popularity of PCA comes from its
properties—it is an optimal linear scheme, in terms of mean
squared error for reducing data to a lower dimensionality and
uses only matrix multiplication operations for reduction and re-
construction. However, classical PCA suffers from large time
complexity (O(Nd?)) just to calculate the covariance matrix
for high dimensional data. Reduction of time complexity is es-
sential especially for the algorithms, where PCA is used funda-
mentally and is computed several times, for example, clusters
of correlation connected objects [5]. Some of the approaches
which aim to reduce time in computing PCs are random pro-
jection (RP) [6,7]. Degalla et al. demonstrated that fewer PCs
are sufficient to produce a high accuracy by PCA, whereas RP
needs a larger number of features to achieve good accuracy [6].
Fradkin and Madigan [7] found in their study that RP is inferior
to PCA for dimensionality reduction. Thus although computa-
tion is speeded up by these approaches their performance does
not compare well with PCA when it comes to dimensionality
reduction.
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Speeding up computation of PCs is not the only point when
studying advanced PCA computation methods. Additionally we
need to see how to balance local and global feature proper-
ties while computing PCs. One approach to PCA that selects
features locally is seen in the SubPCA algorithm [8], where
features were partitioned into ‘sub-patterns’. This approach
showed good results on UCI and other data sets [8]. Further
work using the sub-pattern concept with some modifications
was presented as AwSubPCA [9] and sub-intra-personal sub-
space analysis (SISA) methods [10].

In this paper, we aim to provide a generalization from
sub-patterns to a feature partitioning framework and bring up
the important issues of cross-correlations across sub-patterns,
overlapping of sub-patterns across features, feature order de-
pendency, truncation/padding up of features, etc. We propose
a feature partitioning based approach to principal component
computation, called as SubXPCA. SubXPCA is a general-
ization since we show that SubPCA and PCA can be both
derived as special cases of SubXPCA. SubXPCA balances the
global PCs computation of PCA against the local viewpoint
of SubPCA. We also prove the computational superiority of
SubXPCA over PCA. Comprehensive experimentation shows
the superiority of SubXPCA on UCI repository data, the well
known Yale[11], CMU [12] and ORL[13] face data sets.

In the next section, we take up the major issues of feature
partitioning as mentioned above. This is followed by a for-
mal presentation of the SubXPCA algorithm. We show experi-
mental results in Section 4 followed by concluding remarks in
Section 5.

2. A generalized feature partitioning approach and PCA

In this section we explain the concept of a feature partition-
ing framework to PCA computation. We bring out the vari-
ous feature partitioning issues such as cross-correlations across
sub-patterns, feature order dependency, truncation/padding up
of features and selection of PCs.

We shall use the notation as described below. The
set, X, of all original patterns is denoted by (X)nxa =
(X1, 01), X3,00),...... , (XN, On)] where N is the cardinal-
ity of X. Each original pattern, Xj, is a vector of dimension d
which is given by Xj=(x;,, xi,, ..., x;,) where x; , xi,, ..., xj,
are feature values that represent Xj. Every pattern Xj is asso-
ciated with a class label 0;, where 0; € G,Vi=1,2,..., N.
Here, G = {g1, g2, ..., g1} is the possible collection of class
labels, n is the number of classes under consideration.

2.1. Essential concepts

Following the notation explained previously, consider the
original set of patterns, X. Normally while doing PCA, we
compute the covariance matrix (C) for X, then we find eigen-

vectors and eigenvalues. Instead in the feature partitioning ap-
proach, each instance Xj is divided into k sub-patterns, Pf,
J=1...k. We let SP; denote the set of jth sub-patterns from
each of the original patterns. Now given jth sub-pattern set,

SP;, we can proceed to extract features on this sub-pattern set
by classical PCA procedure. This process is to be repeated
for every sub-pattern set, SP;, j = 1...k. Finally the local
features thus extracted are collated to form combined feature
set (7).

2.2. Feature partitioning issues

2.2.1. Cross-sub-pattern correlations

The features extracted from different sub-pattern sets, SP;;
j=1,...,k, may be correlated. We call such correlations
as ‘cross-sub-pattern correlations’. A good feature partitioning
approach will not neglect such cross-sub-pattern correlations.
These cross correlations help very much in dimensionality re-
duction. A few cross-sub-pattern correlations are illustrated in
Figs. 1 and 2, for the data sets of UCI repositories. First, let
us study the cross-sub-pattern correlations in waveform data
(Fig. 1). Here the first PC from each of 3 sub-pattern sets (SP;
of waveform training data; j=1, 2, 3) as shown in Fig. 1(a,b,c).
As shown in Fig. 1(a) almost entire variance of selected 2 first
PCs of sub-pattern sets is approximated by a single line, hence
cross-sub-pattern correlation is obvious. Similar kind of cross-
sub-pattern correlations are observed between first PCs of sub-
pattern sets: SP2, SP3 (Fig. 1(b)) and SP1, SP3 (Fig. 1(c)).
Another instance of cross-sub-pattern correlations is seen in
musk data (Fig. 2). As shown in Fig. 2 almost entire variance
is approximated by a single line showing the presence of cross-
sub-pattern correlations and thus a possibility of dimensional-
ity reduction from 2 PCs (features) to 1 feature for this (musk)
data set. Thus, we see that cross-sub-pattern correlations are
quite common and can be exploited for better summarization
of variance.

2.2.2. How to partition a given pattern ?

Partitioning of a pattern should minimize the loss of informa-
tion due to partitioning, and/or improve the classification. The
issue here is the procedure used to divide a pattern. For exam-
ple, some methods include (i) dividing a pattern by choosing
features (equal or different number of features) contiguously in
the order of appearance [8], (ii) dividing a pattern by choosing
features randomly, (iii) if pattern is an image, we may divide it
in different ways such as vertical division or horizontal division
or both [14].

2.2.3. Feature order dependency

Consider the selection of p features contiguously, in their
order of appearance to form sub-patterns, while dividing the
given pattern into k sub-patterns. That is, each instance X; =
{xip, e Xipsyenne s Xig 1ypy1r xikp}. Howeyver, the classi-
fication accuracies may differ with different feature orders since
the correlation structures may vary in each sub-pattern set with
the feature order. Feature order is a permutation of feature val-
ues of a pattern. Optimal performance based upon feature or-
dering in sub-patterns is an open issue.

2.2.4. Selection of sub-pattern size

A question arises about what should be the sub-pattern size?
A simple method is to have all k sub-patterns have the same
fixed arbitrary size. If k=1, then feature partitioning approaches
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