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Abstract

Linear dimensionality reduction (LDR) techniques are quite important in pattern recognition due to their linear time complexity and simplicity.
In this paper, we present a novel LDR technique which, though linear, aims to maximize the Chernoff distance in the transformed space; thus,
augmenting the class separability in such a space. We present the corresponding criterion, which is maximized via a gradient-based algorithm,
and provide convergence and initialization proofs. We have performed a comprehensive performance analysis of our method combined with two
well-known classifiers, linear and quadratic, on synthetic and real-life data, and compared it with other LDR techniques. The results on synthetic
and standard real-life data sets show that the proposed criterion outperforms the latter when combined with both linear and quadratic classifiers.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Linear dimensionality reduction (LDR) techniques have been
studied for a long time in the field of pattern recognition. They
are typically the preferred ones due to their efficiency, and be-
cause they are simpler to implement and understand. We as-
sume that we are dealing with two classes, �1 and �2, which
are represented by two normally distributed n-dimensional ran-
dom vectors, x1 ∼ N(m1, S1) and x2 ∼ N(m2, S2), and whose
a priori probabilities are p1 and p2, respectively. The aim is
to linearly transform x1 and x2 into new normally distributed
random vectors y1=Ax1 and y2=Ax2 of dimension d, d < n,
using a matrix A of order d × n, in such a way that the classi-
fication error in the transformed space is as small as possible.

1.1. Related work

Various schemes that yield LDR have been reported in the
literature, including the well known Fisher’s discriminant (FD)
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approach [1], and its extensions: the direct FD analysis [2],
its kernelized version for face recognition [3], the combined
principal component analysis (PCA) and linear discriminant
analysis (LDA) [4], the kernelized PCA and LDA [5], and a
two-dimensional FD-based approach for face recognition [6].
An improvement to the FD approach that decomposes classes
into subclasses has been proposed in Ref. [7]. Rueda et al. [8]
showed that the optimal classifier between two normally dis-
tributed classes can be linear even when the covariance matrices
are not equal. In Ref. [9], a new approach to selecting the best
hyperplane classifier (BHC), which is obtained from the opti-
mal pairwise linear classifier, has been introduced. A computa-
tionally intensive method for LDR was proposed in Ref. [10],
which aims to minimize the classification error in the trans-
formed space and operates by computing (or approximating)
the exact values for the integrals. This approach, though ex-
tremely time consuming, does not guarantees an optimal LDR.
Another criterion used for dimensionality reduction is the sub-
class discriminant analysis [11], which aims to optimally divide
the classes into subclasses, and then performs the reduction
followed by classification.

We now focus on two LDR approaches which are closely
related to our proposed method. Let SW = p1S1 + p2S2 and
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SE = (m1 −m2)(m1 −m2)
t be the within-class and between-

class scatter matrices, respectively. The well-known FD crite-
rion consists of maximizing the Mahalanobis distance between
the transformed distributions by finding A that maximizes the
following function [1]:

JFD(A)= tr{(ASW At)−1(ASEAt)}. (1)

The matrix A that maximizes (1) is obtained by finding the
eigenvalue decomposition of the matrix:

SFD = S−1
W SE , (2)

and taking the d eigenvectors whose eigenvalues are the largest
ones. Since SE is of rank one, S−1

W SE is also of rank one. Thus,
the eigenvalue decomposition of S−1

W SE leads to only one non-
zero eigenvalue, and hence FD can only reduce to dimension
d = 1.

Loog and Duin have recently proposed a new LDR tech-
nique for normally distributed classes [12], namely LD, which
takes the Chernoff distance in the original space into consider-
ation to minimize the error rate in the transformed space. They
consider the concept of directed distance matrices, and a lin-
ear transformation in the original space, to finally generalize
Fisher’s criterion in the transformed space by substituting the
between-class scatter matrix for the corresponding directed dis-
tance matrix. The LD criterion consists of obtaining the matrix
A that maximizes the function [12]:

JLD2 (A)= tr
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(3)

where the logarithm of a matrix M, log(M), is defined as

log(M)�� log(�)�−1, (4)

with � and � representing the eigenvectors and eigenvalues of
M.

The solution to this criterion is given by the matrix A that
is composed of the d eigenvectors (whose eigenvalues are the
largest ones) of the following matrix:

SLD2 = S−1
W

[
SE
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.

(5)

The FD criterion discussed above aims to minimize the clas-
sification error by maximizing the Mahalanobis distance be-
tween distributions, resulting in an optimal criterion (in the
Bayesian context) only when the covariance matrices are equal
[13], while the LD criterion utilizes, as pointed out above, a
directed distance matrix, which is incorporated in Fisher’s cri-
terion assuming the within-class scatter matrix is the identity.

1.2. Highlights of the proposed criterion

In this paper, we take advantage of the relationship between
the probability of classification error of the optimal (in the
Bayesian sense) classifier and the Chernoff distance, and pro-
pose a new criterion for LDR that aims to maximize the sepa-
rability of the distributions in the transformed space based on
the Chernoff measure. Since we are assuming the original dis-
tributions are normal, the distributions in the transformed space
are also normal.2 Thus, the Bayes classifier in the transformed
space is quadratic and the classification error (also known as
true error [1]) does not have a closed-form expression. Let
p(y|�i ) be the class-conditional probability that a vector y=Ax
in the transformed space belongs to class �i . The probability
of error can be bounded by the Chernoff distance between two
distributions as follows [1]:

Pr[error]=
∫
R2

p1p(y|�1) dy+
∫
R1

p2p(y|�2) dy (6)
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�
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= p
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2 e−k(�,A), (7)

where R1 and R2 are the regions in which an object is assigned
to class �1 or �2, respectively. For normally distributed classes,
it can be shown that the Chernoff distance is given by [1]:

k(�, A)= �(1− �)

2
(Am1 − Am2)

t[�AS1At

+ (1− �)AS2At]−1(Am1 − Am2)

+ 1

2
log
|�AS1At + (1− �)AS2At|
|AS1At|�|AS2At|1−�

, (8)

where � ∈ [0, 1].
The larger the value of k(�, A) is, the smaller the bound for

the classification error is, and hence, in this paper, we propose
to maximize (8). To clarify this, we note that the FD criterion
also aims to maximize the separability between distributions in
the transformed space, but coincides with the optimal classifier
only when the latter is linear, i.e. when the covariance matrices
are coincident, a rare case. As observed above, the LD criterion
utilizes the Chernoff distance in its directed distance matrix but
in the original space. This criterion, however, does not optimize
such a distance in the transformed space, as it can be observed
in the example given below. A few remarks are discussed prior
to the example.

For normally distributed classes, Eqs. (7) and (8) are use-
ful for approximating the probability of error for the optimal
(Bayesian) classifier. Since this is not usually the case for real-
life data, other factors should be taken into consideration. First,
normal distributions are characterized by the first two moments,
while it is not (always) the case for real-life data. As pointed out
in Ref. [1], the Chernoff bound can still be used when normal-
ity is not in place; however, it is not as accurate as for normal

2 We note, however, that this assumption is not necessarily true in
practice, and that our proposed criterion is still efficient even when data has
other distributions, as shown in the empirical result section.
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