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A generalized discriminative multiple instance learning (GDMIL) algorithm is presented to train the
classifier in the condition of vague annotation of training samples GDMIL not only inherits the original
MIL's capability of automatically weighting the instances in the bag according to their relevance to the
concept but also integrates generative models using discriminative training. It is evaluated on the task
of multimedia semantic concept detection using the development data set of TRECVID 2005. The experi-
mental results show GDMIL outperforms the baseline systems trained on MIL with diverse density and
expectation--maximization diverse density and the system without MIL.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Enormous digital multimedia is archived and it is still growing
exponentially with the popularity of Internet and personal digital
multimedia devices. However, efficiently managing (e.g., indexing,
search and browsing) such giant multimedia database at the seman-
tic level is still a challenge. In the past, extensive studies on content-
based image retrieval have been done on retrieving the image based
on low-level feature similarity. Retrieving from the video stream
at the semantic level attracts more attention in recent years. The
techniques are being advanced by the annual TREC video retrieval
evaluation (TRECVID) organized by NIST.1 They exploited various
machine learning algorithms for detectingmultimedia semantic con-
cept. For each interested semantic concept, the training samples (i.e.,
keyframes) are manually annotated based on the visual content. A
keyframe is labeled as the positive class if it is relevant to the con-
cept. Otherwise, it is negative [1]. Supervised learning algorithms
are then applied to train a classifier based on the annotated training
set. Finally, the classifier is used to score and sort the video shots.

In semantic concept detection, the keyframe label is a weak an-
notation. It means that the concept label is given to the whole image
and it is not known which regions or patches are exactly relevant to
the concept. For example, an image annotated as a Car only tells us
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that there is a car in the image, but it is not known where the car
is. Furthermore, the real-world image may have complex scenes. For
example, the annotated Car image may contain other objects such as
building, tree, people, etc. Thus the positive training image will have
many irrelevant regions associated with the concept. Sometimes it
may become more severe; for instance, the interested concept may
only occupy a small part in the whole image. Thus it is difficult to
learn a good concept model from this training set. To eliminate the
effects of such noises, the ideal way is to build a training set by ex-
actly annotating the concept in the regions. However, it is infeasi-
ble for large-scale images because labeling is very time consuming.
Large-scale images annotated at the whole image level could be eas-
ily collected through the website. For example, we can use the image
search engine such as Google image search 2 to collect the image
data for a specific concept. Therefore, it is interesting to develop a
learning algorithm that can learn a "good'' (in terms of selected met-
ric) classifier for the semantic concept.

Multiple instance learning (MIL) is such a framework [2,3,21,22,
24--26]. MIL learns the classifier from the labeled bag samples. Each
bag is a container, which has multiple instances. For example, in
multimedia semantic concept detection, the bag is the whole image
and the instance is a patch or region represented in a D-dimensional
feature space. MIL is originally introduced to predict the drug activity
in Ref. [3]. But it now has succeeded in a few other applications

2 http://images.google.com/.
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such as content-based image retrieval [4--6], image classification
[7,8], semantic concept detection [9], object detection [10], face la-
beling in news video [11], text categorization [12], etc.

In this paper, we will systematically study the generalized
discriminative multiple instance learning algorithm (GDMIL) for
semantic concept detection. This is an abstract extension of our
previous work in Ref. [13]. We will empirically study the usefulness
of GDMIL in semantic concept detection and compare with other
two popular MIL algorithm such as diverse density (DD) [3] and
expectation--maximization diverse density (EM-DD) [14]. GDMIL
can train any type of generative models such as Gaussion mixture
model (GMM), hidden Markov model (HMM), etc. Thus it owns the
original MIL's capability of automatically weighting the instance in
the bag according to their relevance to the concept. Moreover, it in-
tegrates expressive power of generative models using discriminative
training. Its efficiency on semantic concept detection is evaluated on
the large-scale development set in TRECVID 2005. We compare the
algorithms in terms of classification accuracy, ranking performance
metric such as AUC and precision--recall (PR) curve. Up to now,
we have not seen much work for evaluating MIL on the large-scale
real-world TREC video image using the ranking measure. Much of
the past work is on the photographic image and is only reported on
classification accuracy [4,5,7,8]. We shall also demonstrate in our
experiments that classification accuracy is not a good measure for
evaluating MIL algorithms on semantic concept detection task.

The paper is organized as follows. Next, we review the prior work
related to MIL. In Section 3, we discuss the classical MIL formulation
in detail. GDMIL will be presented in Section 4. We report our ex-
perimental results and analyses in Section 4.1. Finally, we conclude
our findings in Section 4.2.

2. Related work

The classical MIL is originally proposed in Ref. [2] to predict the
drug activity. The objective is to predict whether a drug molecule
can bind well to a target protein or not. In the task, the bag is the
molecule and instances are the shapes in the molecule. A bag is
positive if at least one shape binds well and it is negative otherwise.
The axis-parallel rectangles learning algorithm is proposed to solve
the MIL problem. Following the work, the DD algorithm is presented
to find the target point in the instance space [3]. It assumes the target
is one or more feature point in the instance space. A noisy-or model
is employed to calculate the prediction probability of a bag labeled
as the target (the positive) or non-target (the negative). With the
assumption of target concept having a Gaussian distribution, then
the target model is estimated through maximizing the likelihood.
Since DD tries several starting points selected from all instance in
positive bags, it converges slowly and computation cost is high. Thus
EM-DD is introduced [14]. EM-DD uses two steps for estimating the
target. In the first expectation step, one instance most closely to the
target hypothesis is picked from each bag and other instances are
ignored. In the second maximization step, the target hypothesis is
updated using the DD algorithm. Since only one instance in each bag
is kept in the expectation step, computation cost for the following
DD is significantly reduced. Other researchers also modify the kNN
(Citation kNN) [15] or SVM to handle MIL problem [12]. Unlike DD,
EM-DD and Citation kNN, SVM-based MIL is a discriminative training
version for MIL.

Another way for address MIL problem is to use the traditional
supervised learning approach. By assuming all instances in the pos-
itive bag belong to the positive, then the MIL is a standard super-
vised learning problem with the complete label information on all
instances. In Ref. [16], the empirical comparison between the super-
vised learning and MIL is studied on various MIL data sets. Some
interesting conclusions were obtained such as (1) there is no MIL

algorithm superior to others across all domains and (2) some MIL al-
gorithms are consistently superior to their supervised counterparts.

It is common to index the image content using a set of feature
vectors among which only a few are relevant to the concept. Thus the
task of classifying the image will naturally fit well with MIL frame-
work. Therefore, it is not surprising that there are some previous
works on applying MIL to image classification, object detection and
content-based image retrieval [4--11].

Since the image feature is often continuous, one popular model to
characterize the feature distribution is GMM. For instance in Ref. [17],
GMM is used to model the feature distribution of image database in
the scenario of content-based image retrieval with relevance feed-
back. They assumed that one component in GMMs the distribution
of the semantic concept while others model the negative class. Since
the correspondence between components and models are unknown,
active concept learning is proposed. Due to the image features being
extracted from the whole image rather than the regions, thus active
concept learning in Ref. [17] loses the capability of MIL approaches.
In GDMIL, image features are extracted from regions and GMM is ap-
plied to model the distributions of the positive class as well as that
of the negative class separately. Combining with MIL learning, we
can automatically weigh the features in an image in terms of their
relevance to the positive class and the negative class.

3. Multiple instance learning

The training samples in MIL are provided at the bag level, each
bag containing multiple instances [3]. Annotation is given to the bag
while the labels associated to instances are unknown. For the se-
mantic concept detection task, the bag is the whole image while
the instances are the particular regions or patches. A D-dimensional
feature vector is extracted from each region or patch to represent
image content. The union of instances describes the bag. A bag is
annotated as the positive if at least one of its instances (i.e., region
or patch) is associated to the concept. Otherwise, it is negative. We
use the similar notations as in Ref. [3]. B+

i
is the i-th positive bag

with |B+
i

| being the number of instances, and its j-th instance is B+
ij
.

B−
i

is the i-th negative bag with |B−
i

| being its instance size, whose
j-th instance isB−

ij
. We assume there are M positive bags and N neg-

ative bags in the training set. The target concept t to be estimated is
a single or multiple points in the D-dimensional feature space.

The target, t∗, is estimated by maximizing the joint probability
of the training samples defined in Eq. (1),

t∗ = max
t

P(B+
1 , . . . , B+

M, B−
1 , . . . , B−

N |t) (1)

When assuming the bags are conditionally independent given the
target and the target has a uniform prior over the concept location,
then Eq. (1) will be

t∗ = max
t

M∏
i

P(t|B+
i

)
N∏
i

P(t|B−
i

) (2)

This is a general definition in Ref. [3]. To define the conditional prob-
ability in Eq. (2), a noisy-or model is applied. Thus the probability of
predicting a positive bag as the positive is calculated as

P(t|B+
i

) = 1 −
∏
j

(1 − P(t|B+
ij

)) (3)

Similarly, the probability of negative bag predicted as the negative
is calculated as

P(t|B−
i

) =
∏
j

(1 − P(t|B−
ij

)) (4)
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