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Boosted manifold principal angles for image set-based recognition
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Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

Received 29 June 2006; received in revised form 31 October 2006; accepted 29 December 2006

Abstract

In this paper we address the problem of classifying vector sets. We motivate and introduce a novel method based on comparisons between
corresponding vector subspaces. In particular, there are two main areas of novelty: (i) we extend the concept of principal angles between linear
subspaces to manifolds with arbitrary nonlinearities; (ii) it is demonstrated how boosting can be used for application-optimal principal angle
fusion. The strengths of the proposed method are empirically demonstrated on the task of automatic face recognition (AFR), in which it is
shown to outperform state-of-the-art methods in the literature.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Many computer vision tasks can be cast as learning problems
over vector sets. In object recognition, for example, a set of
vectors may represent a variation in an object’s appearance—be
it due to camera pose changes, non-rigid deformations or vari-
ation in illumination conditions. The objective of this work is
to classify a novel set of vectors to one of the training classes,
each also represented by a vector set. In this paper, learning
concepts will be illustrated on sets of face appearance images
using the AFR paradigm, although the reader should note that
no domain-specific information is actually used.

1.1. Previous work

Most of the previous work on matching vector or image sets
exploits their semantics to a certain degree, for example by
modelling temporal coherence between consecutive vectors i.e.
by matching sequences. By their nature, these methods are of
little relevance to the work presented in this paper, so we do not
address them here. Broadly speaking, in the recent literature
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we recognize two groups of approaches to learning over sets
of vectors: statistical and principal-angle based.

1.1.1. Statistical methods
Statistical learning approaches rely on the assumption

that vectors x of the ith class are independently and identi-
cally (i.i.d.) drawn samples from p(i)(x). The problem of set
matching then becomes that of estimating each underlying
probability density and comparing two such estimates. In the
work of Shakhnarovich et al. [1], densities p(i)(x) are mod-
elled as multivariate Gaussians, estimated with probabilistic
principal component analysis (PCA) [2] and compared us-
ing the Kullback–Leibler (KL) divergence [3]. Arandjelović
et al. criticized this approach for its insufficiently expressive
modelling and proposed a kernel-based method to implicitly
model nonlinear, but intrinsically low-dimensional manifolds
of faces [4]. In this work, the authors also argue against the
use of KL divergence due to its asymmetry and demonstrate
a superior performance of the resistor–average distance [5]
on the task of AFR under mildly varying imaging conditions.
In Ref. [6], a Gaussian mixture model (GMM) is proposed
for high-dimensional density estimation. The advantage of
this approach over the previously mentioned kernel method
lies in its more principled modelling of densities confined to
nonlinear manifolds; however this benefit comes at the cost
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of increased difficulty of divergence computation, performed
using a Monte–Carlo algorithm.

1.1.2. Principal angle-based methods
Principal angles are minimal angles between vectors of two

subspaces (see Section 2). Since the concept of principal an-
gles was first introduced by Hotelling in Ref. [7], it has been
applied in various fields [8–10]. Of most relevance to the work
addressed in this paper is the mutual subspace method (MSM)
of Yamaguchi et al. [11]. In MSM the sum of cosines of the
first (i.e. smallest) few principal angles1 is used as a similar-
ity measure between linear subspaces used to compactly char-
acterize vector sets. MSM has been successfully used for face
recognition [11] and ship identification [12] (for evaluation re-
sults also see Refs. [4,6]). In the related works [32,13], vec-
tor sets are projected to the linear subspace that attempts to
maximize the separation (in terms of principal angles) between
vector spaces corresponding to different classes, under the as-
sumption of their linearity.

MSM-based methods have two major shortcomings: the lim-
ited capability of modelling nonlinear pattern variations and the
ad hoc fusion of information contained in different principal an-
gles. The assumption of linearity of modelled vector subspaces
is important, both because it means that MSM is incapable of
differentiating between two nonlinear manifolds embedded in
the same linear space and because of the sensitivity of such
estimate to particular data variation [4]. In Ref. [14] Wolf and
Shashua show how principal angles between nonlinear sub-
spaces can be computed using the “kernel trick” [15]. However,
the reported evaluation was performed on a database of a rather
small size, making it difficult to judge the performance of their
method. Additionally, as in all kernel approaches, finding the
optimal kernel function is a difficult problem.

An attractive feature of MSM-based methods is their compu-
tational efficiency: principal angles between linear subspaces
can be computed rapidly [16], while the estimation of lin-
ear subspaces can be performed in an incremental manner
[17–20].

1.1.3. Densities vs. subspaces
As a conclusion to this section, we would like to briefly

discuss the advantages and disadvantages of the two learn-
ing approaches: one which learns densities confined to low-
dimensional subspaces and the other which learns the subspaces
themselves. In many computer vision applications, due to dif-
ferent data acquisition conditions, the frequency of occurrence
of a particular pattern can vary arbitrarily between the training
stage and a novel input to the system.2 In this case, subspace
learning techniques are more applicable as they effectively
place a uniform prior over a space of possible pattern variation.
On the other hand, if there is a reason to believe that train-
ing and novel data share some statistical properties, density-

1In statistics, the cosines of canonical angles are termed canonical cor-
relations.

2The term “arbitrarily” should be taken in practical terms i.e. given the
parameters which one can realistically expect to model, control or affect.

based methods may produce better results. In AFR work of
Arandjelović et al. [6], for example, the authors note that
anatomical constraints and the constraints of the imaging setup
make certain head poses more likely than others, therefore
opting for a statistical approach to recognition. The point to
take is that neither of the two approaches is inherently the
right one, but that the choice between the two is dictated by a
particular problem.

2. Boosted manifold principal angles (BoMPA)

In this work (the earlier conference version appeared in
Ref. [33]), we are interested in discriminating between abstract
classes represented as vector sets without any knowledge of
what the data represents. Before tackling this problem, it is im-
portant to recognize the difficulties of comparing vector sets
common to its different semantic instances:

• Expressiveness: Pattern changes across and within modelled
vector sets often exhibit significant nonlinearities. Seeing that
differences within a class can oftentimes be greater than be-
tween classes (in Euclidean distance sense), it is important
to use a model flexible enough to capture this complex varia-
tion, see Fig. 1 for an example. In Section 2.3 we achieve this
by moving away from the typically used parametric models
and formulate a method that uses canonical correlations and
Gaussian mixtures matching.

• Graceful degradation: The exact vectors used as an input (ei-
ther as training or test) to a practical system can be expected
to vary from time to time, depending on the exact data acqui-
sition protocol employed. In particular, sometimes more and
sometimes less data is available. In the context of face recog-
nition, for example, this may be because the user has not
assumed certain poses or because face detection has failed.
Graceful degradation refers to slow decay in performance
of a learning algorithm as less and less data is available.
Our canonical angles-based framework is already exhibit-
ing this property in that only the most similar and discrimi-
nating regions of two subspaces are actually compared (see
Sections 2.1 and 2.2). Further robustness is achieved by our
extension of the similarity function to nonlinear manifolds in
Section 2.3 by discarding all but the most reliable matching
linear patches.

• Robustness to noise: Noise is very much an inherent prob-
lem in any practical application. In computer vision, for
example, vector patterns considered may represent appear-
ance images—these are affected by noise sources such as
quantum, quantization or due to spatial discretization. Our
assumption of intrinsically low-dimensional pattern varia-
tions within a set, corrupted by isotropic Gaussian noise, are
captured well using probabilistic PCA in Section 2.3.

• Numerical stability and efficiency: Closely related to the pre-
viously mentioned issue of noise in data are numerical issues
pertaining to the implementation of a particular algorithm.
It is an imperative for a practical algorithm to be numeri-
cally stable and, often, be time efficient. These issues are
discussed in Sections 2.3 and 3.
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