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A statistical approach to sparse multi-scale phase-based stereo
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Abstract

In this study, a multi-scale phase based sparse disparity algorithm and a probabilistic model for matching uncertain phase are proposed.
The features used are oriented edges extracted using steerable filters. Feature correspondences are estimated using phase-similarity at
multiple scale using a magnitude weighting scheme. In order to achieve sub-pixel accuracy in disparity, we use a fine tuning procedure
which employs the phase difference between corresponding feature points. We also derive a probabilistic model, where phase uncertainty
is trained using data from a single image pair. The model is used to provide stable matches. The disparity algorithm and the probabilistic
phase uncertainty model are verified on various stereo image pairs.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

In sparse stereo [1–5], distinctive image features are ex-
tracted and corresponding pairs are matched using a feature-
based similarity criterion. The advantage of these methods
is that they can produce very accurate results. The disadvan-
tage is that the methods fail in structureless or textureless
image regions, and the resulting pattern of correspondences
can become rather sparse.

To be useful for successful stereo matching, local features
must be stable or robust under typical image deformations,
such as scale changes, noise, brightness variations and rota-
tion. Moreover, once detected the features and their locations
should provide salient information that can be used to estab-
lish unambiguous correspondence information. There are a
number of ways in which this can be achieved. For instance,
a brute force approach is to perform correlation matching of
the normalized brightness values in an image neighborhood.
A more subtle approach is to capture the local brightness
structure using differential operators [6]. However, one of
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the most elegant methods is to use local phase information,
and to locate correspondences using phase congruence.

There are several examples of the phase-based approach
in the literature. For instance, Jenkin and Jepson [7], Jepson
and Fleet [8,9] and Sanger [10] developed methods based
on the phase behavior of the output of band-pass Gabor
filters. Jepson and Fleet [9] provide a justification for phase-
based techniques based on an analysis of the stability of the
band-pass phase behavior under typical distortions that exist
between the left and right stereo views. Carneiro and Jepson
[11] have shown that the phase information provided by
steerable filters is often locally stable with respect to scale
changes, noise and mutual brightness variations. In a more
recent study, they take this work one step further and show
that it is also possible to achieve stability under rotation by
selecting the steerable filter [12]. They also conclude that
although phase-based local features perform better in terms
of mutual illumination changes, in the case of 2D rotation
and sub-pixel translation, for scale and large shear changes,
the robustness of phase-based features to scale changes must
be improved. This is done by using a denser sampling in
the scale-space, and this in turn provides stable multi-scale
phase-based features [11,12].

http://www.elsevier.com/locate/pr
mailto:ilkay@metu.edu.tr


I. Ulusoy, E.R. Hancock / Pattern Recognition 40 (2007) 2504–2520 2505

Experience shows that disparity estimates from local
phase-differences are reliable near edges, but yield poor
results at intermediate locations. In Ref. [13] a probabilistic
lattice structure is proposed to fill unreliable regions that
result after phase-based disparity estimation. The method
uses a simple smoothness constraint motivated by Markov
random fields.

There are many other probabilistic algorithms that can be
used to estimate the disparity map between stereo images.
These methods share the feature of maximizing the condi-
tional probability of the observed disparities given the stereo
images. The main problem in developing such methods is
how to calculate the conditional probability given only the
stereo image set. In Ref. [14] a Gibbs distribution is used to
develop a Markov Random Field model for the distribution
of feature points. In this paper it is proved that it is possi-
ble to estimate the disparity of a position, if all of the joint
probability distributions between neighborhood disparities
are known in advance. Myers et al., have used graph edit
distance to find stereo correspondence in wide-baseline un-
calibrated stereo images [15]. Olson [16,17] has done work
on the stereo matching problem in the context of match-
ing edge images for robot localization. Using a probabilis-
tic framework, his method considers the distance from each
pixel in the template to the closest matching pixel in the im-
age. The joint probability density function is approximated
as a product of individual probability distribution functions,
assuming that the distance measurements are independent.

In this study we propose a sparse disparity algorithm
where multi-scale phase similarity is used as a matching cri-
terion. Our approach is as follows: We commence from fea-
ture points detected using a steerable filtering method [18],
as done in Ref. [19] (Section 2.1). Instead of corners, which
are very sparse, we use oriented edges as the features to
be matched. In this way the points at depth and intensity
discontinuities are selected as features independent of their
scale and orientation. In contrast, most stereo algorithms fail
at discontinuities [20]. In this study we deal with points at
object edges and within textured regions which correspond
to depth and intensity discontinuities. These features pro-
vide reliable information for the computation of multi-scale
phase. The phases at different scales are calculated and a
phase vector is formed for each feature point. Then, corre-
spondences are estimated using the phase-similarity at mul-
tiple scales together with a magnitude weighting scheme
(Section 2.2). In this way we avoid the singular points en-
countered in the method of Jepson and Fleet [8,9]. After
calculating disparity from the positional difference between
corresponding points, fine-tuning in disparity is performed
using the phase difference between corresponding feature
points (Section 2.3). In this way we achieve a sub-pixel ac-
curacy in disparity. We also develop an alternative method
of arriving at feature point correspondences where we use
a probabilistic model (Section 3). We train our model from
data in a single image pair, and use the model to provide sta-
ble matches in other image pairs. We model the probability

distribution of phase differences for pairs of corresponding
points using a mixture of von Mises distributions at each
scale. In this way the probability of a phase difference can
be used as a measure of the confidence of correspondence
(Section 3.1). We base our decision concerning correspon-
dences on the product of probability distributions over the
different scales used in the analysis (Section 3.2). This pro-
vides a higher degree of discrimination than the method dis-
cussed in Section 2. Finally Section 4 presents our results
and Section 5 provides some conclusions and discusses di-
rections for future research.

2. Multi-scale phase based disparity algorithm

In this section we describe our filter-based approach to
disparity estimation. We commence by describing the steer-
able filters used in our study. Next we explain how the filter
outputs can be used to establish correspondences. Finally,
we explain how the correspondences can be used to estimate
disparity with sub-pixel accuracy.

2.1. Feature extraction using steerable filters

We follow Ludtke et al. [21] and construct our feature
detection model using the idea of orientation selective cells
and hyper column structure in the visual cortex. The feature
points used in our study are detected using steerable filters
as in Ref. [19]. The analytic filter used as the template filter
is constructed from the filters described by Freeman and
Adelson [18]. If x= (x, y) is the pixel location in the image,
I (x) then the template filter is given by

h(x) = g(x) + jq(x), (1)

where g(x, y) is chosen to be the 4th derivative of a Gaussian
with a variance � = 1/

√
2 normalized to unit energy (Eq.

(2)) and q(x, y) is chosen to be a steerable approximation
to the Hilbert Transform of g(x, y) (Eq. (3)),

g(x, y) = (0.934 − 3.738x2 + 1.246x4)e−(x2+y2) (2)

and

q(x, y) = (2.858x − 2.982x3 + 0.3975x5)e−(x2+y2). (3)

For an arbitrary orientation �, g�(x) can be synthesized using
five basis filters of orientation 0◦, 36◦, 72◦, 108◦ and 144◦
as in Eq. (4). Also, q�(x) can be synthesized using six basis
filters of orientation 0◦, 30◦, 60◦, 90◦, 120◦ and 150◦ as in
Eq. (5). R�i

is the rotation matrix in both the cases:

g(R�x) =
5∑

i=1

1

5
(1 + 2 cos(2(� − �i ))

+ 2 cos(4(� − �i )))g(R�i
x), (4)
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