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Abstract

Support vector machines (SVMs) are a new and important tool in data classification. Recently much attention has been devoted to large
scale data classifications where decomposition methods for SVMs play an important role.

So far, several decomposition algorithms for SVMs have been proposed and applied in practice. The algorithms proposed recently and
based on rate certifying pair/set provide very attractive features compared with many other decomposition algorithms. They converge not only
with finite termination but also in polynomial time. However, it is difficult to reach a good balance between low computational cost and fast
convergence.

In this paper, we propose a new simple decomposition algorithm based on a new philosophy on working set selection. It has been proven that
the working set selected by the new algorithm is a rate certifying set. Further, compared with the existing algorithms based on rate certifying
pair/set, our algorithm provides a very good feature in combination of lower computational complexity and faster convergence.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Support vector machines (SVMs) are a new classification
method (see, e.g. Refs. [1–3]), which is widely used in data
mining and machine learning. Suppose there are m training
samples {(x1, y1), . . . , (xm, ym)}, where xi is an n-dimensional
vector and yi ∈ {−1, 1}. SVMs find a hyperplane (w ·x)+b=0
in a mapped sample space, which classifies the samples into
proper classes, that is, sgn((w · xi) + b) = yi , where w is an
m-dimensional vector and the minimum distance between the
two classes gets its largest value. The above problem can be
represented with its dual representation as the convex quadratic
optimization problem:⎧⎨
⎩

min
�

f (�)= 1
2��Q�− e��

s.t. y��= 0,

0��i �C, i = 1, . . . , m,

(1.1)

∗ Corresponding author. Institute of Applied Mathematics, Chinese
Academy of Sciences, Beijing 100080, China. Tel.: +86 10 6265 1358.

E-mail addresses: hong.qiao@mail.ia.ac.cn (H. Qiao),
b.zhang@amt.ac.cn (Y. Wang), b.zhang@coventry.ac.uk (B. Zhang).

0031-3203/$30.00 � 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2006.12.024

where C is a positive number, � is an m-dimensional vector, e is
an m-dimensional vector with elements 1, and Q is a symmetric
and positive semi-definite matrix with elements qij = yiyj ·
K(xi, xj ). Here K(xi, xj ) denotes the kernel function used in
SVMs classifiers.

In practical application, the size of the training samples is
very huge, and solving the problem (1.1) on a large data set
is challenging. So far, the main technique of solving the prob-
lem (1.1) is to decompose the original optimization problem
into a series of sub-optimization problems, each of which op-
timizes the objective function f (�) with only a small num-
ber of elements in � varying, so that the size of the sub-
optimization problems is fit for the computing memory. This
is called as the decomposition method which was proposed in
Refs. [5,7,8,10–12]. The basic procedure of this method is as
follows:

Algorithm 1.1 (Decomposition method).

(1) Let �0 be the initial solution. Set k = 0.
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(2) If �k is an optimal solution of Eq. (1.1), then stop. Other-
wise, find a working set B ⊂ {1, . . . , m} with the size
|B|�q, and set N = {1, . . . , m}\B.

(3) Solve the following subproblem for the variable �B :⎧⎪⎨
⎪⎩

min 1
2��BQBB�B − (eB −QBN�k

N )��B

s.t. y�B �B =−y�N�k
N ,

0�(�B)i �C, i = 1, . . . , q,

(1.2)

where �B denotes the sub-vector of � projected onto the
working set B, �k

N denotes the sub-vector of �k projected
onto the non-working set N, yB and yN are defined simi-
larly, and eB is a |B|-dimensional vector with elements 1,

and

[
QBB QBN

QNB QNN

]
is a permutation of the matrix Q.

(4) Set �k+1
B to be the optimal solution of Eq. (1.2) and let

�k+1
N = �k

N . Set k← k + 1 and go to Step (2).

The key issue of the decomposition method is how to select
the working set in each iteration. It is not easy to select the
working set B to guarantee a fast convergence of the method.
Many different selection rules have been proposed in decom-
position methods for SVMs (see, e.g. Refs. [4–12]). For exam-
ple, the SV Mlight algorithm [5], which is a very important and
widely used algorithm, selects q/2 pairs of �i as the working
set which violate the Karush–Kuhn–Tucker (KKT) conditions
of the problem (1.1) the most, where q �2 is an even num-
ber. The convergence of the SV Mlight algorithm was proved
in Ref. [8] under the condition that minI (min(eig(QII ))) > 0,
where QII is any |I | × |I | sub-matrix of Q with |I |�q and
min(eig(QII )) is the smallest eigenvalue of QII . The sequen-
tial minimum optimization (SMO) algorithm [11] is another
popular decomposition algorithm which is similar to SV Mlight

but restricts the size of the working set to be two, so that the
sub-optimization problem can be solved analytically. The gen-
eralized SMO algorithm proposed in Refs. [6,7] selects one
the so-called �-violating pair as the working set. The finite
termination of the generalized SMO algorithm was shown in
Ref. [6] without the condition that minI (min(eig(QII ))) > 0.

Recently, a polynomial time decomposition algorithm was
proposed in Ref. [4] which introduced the concept of an �-rate
certifying pair. It was proved in Ref. [4] that, if each working
set includes at least one �-rate certifying pair then it is guar-
anteed that the algorithm approaches within � of optimality af-
ter O(1/(��2)) iterations. Further, an algorithm was given in
Ref. [4] that finds an 1/m2-rate certifying pair in O(m log m)

steps. Thus, the decomposition algorithm in Ref. [4] is within
� of optimality after O(m4/�) iterations. In Ref. [9], the above
result of Ref. [4] was generalized and improved by introduc-
ing the general notion of an �-rate certifying r-set which is an
extension of the concept of the �-rate certifying pairs to the
case of general convex quadratic optimization problems with
r − 1 equality constraints. A polynomial time decomposition
algorithm was also provided in Ref. [9] to find an �-rate cer-
tifying r-set. For the special case of SVMs the decomposition
algorithm in Ref. [9] finds an 1/m-rate certifying 2-set (that
is, an 1/m-rate certifying pair) in O(m log m) steps. So the

decomposition algorithm in Ref. [9] is within � of optimality
after O(m2/�) iterations, which improves on the bound ob-
tained in Ref. [4] by factor m2. It should be remarked that the
algorithm given in Ref. [9] in selecting a rate certifying set re-
quires to solve a linear programming problem and therefore is
of higher computational cost. Note that the convergence rate of
the SVM decomposition algorithms in Refs. [4,9] is given only
in terms of � and the problem parameters (like, for example, the
number m of training samples and the number of equality con-
straints), whereas the dependence on the size of the working
size is not clarified.

In this paper we propose a new simple polynomial time de-
composition algorithm based on a new philosophy, which se-
lects a working set of size q �qm, where q and qm are even
numbers and qm is the maximal size of the working set. A main
feature of the algorithm is that the algorithm does not need to
solve a linear programming problem in selecting the working
set but guarantees that the working set selected is an q/(4m)-
rate certifying set. So the algorithm is within � of optimality
after O(m2/(�q)) iterations. Compared with the algorithms in
Refs. [4,9] our algorithm is of both lower computational cost
and fast convergence rate.

The remaining part of the paper is organized as follows.
Section 2 gives a detailed analysis of some existing working
set selection algorithms. The new simple algorithm is given in
Section 3 along with the proof of its polynomial-time conver-
gence. The conclusions are given in Section 4.

2. Some existing working set selection algorithms

2.1. Maximally KKT-violating pairs

The most prominent approaches to working set selections are
the selection of the maximally KKT-violating pairs as imple-
mented for example in SV Mlight [5]. In fact, the working set
selection used in SV Mlight is based on the feasible direction
method. It finds the optimization directions through solving a
linear optimization problem, that is, only the components of
�k with non-zero di are included in the working set, where k
is the number of iteration and d is an optimal solution of the
following problem:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mind %f (�k)�d

s.t. y�d = 0,

−1�di �1, i = 1, . . . , m,

di �0 if (�k)i = 0; di �0 if (�k)i = C,

|{di |di �= 0}|�q,

(2.1)

where di is shown to be 0, −1 or 1. However, the implemen-
tation of the above optimization problem is equivalent to that
derived from the maximal violation of the KKT conditions of
the original problem (1.1) with the size of the working set be-
ing restricted to be even. The KKT conditions for the problem
(1.1) can be written as

Fi(�)�Fj (�) ∀i ∈ Iup(�) ∪ Imid(�),

j ∈ Ilow(�) ∪ Imid(�), (2.2)
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