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Abstract

We introduce the ‘No Panacea Theorem’ (NPT) for multiple classifier combination, previously proved only in the case of two classifiers and
two classes. In this paper, we extend the NPT to cases of multiple classifiers and multiple classes. We prove that if the combination function
is continuous and diverse, there exists a situation in which the combination algorithm will give very bad performance. The proof relies on
constructing ‘pathological’ probability density distributions that have high densities in particular areas such that the combination functions give
incorrect classification. Thus, there is no optimal combination algorithm that is suitable in all situations. It can be seen from this theorem that
the probability density functions (pdfs) play an important role in the performance of combination algorithms, so studying the pdfs becomes
the first step of finding a good combination algorithm. Although devised for classifier combination, the NPT is also relevant to all supervised

classification problems.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

For almost any pattern recognition problem, there exist many
classifiers that provide potential solutions to it. It is well estab-
lished that combinations of these may provide more accurate
recognition performance than any individual classifier. There is,
however, little general agreement upon the underlying theory
of classifier combination apart from various results and ideas
scattered in the literature. A popular analysis of combination
schemes is based on the well-known bias—variance dilemma
[1]. Tumer and Ghosh [2] showed that combining classifiers
using a linear combiner or order-statistics combiner reduces
the variance of the actual decision boundaries around the opti-
mal boundary. Kittler et al. [3] developed a common theoret-
ical framework for a class of fixed combination schemes and
gave a possible reason why the sum rule often outperforms
the product rule. Notwithstanding these theoretical studies, the
present paper describes some pessimistic aspects of classifier
combination. We prove that there is no ‘perfect’ combination
algorithm suitable for all situations. Such a property, called the
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“no panacea” principle by Kuncheva [4], appears widely ac-
knowledged, but no strict mathematical proof exists for it.
The ‘No Panacea Theorem’ (NPT) for classifier combina-
tion can be regarded as a generalisation of the ‘No Free Lunch’
(NFL) theorems [5,6]. Wolper and Macready [6] proved that
any two optimisation algorithms are equivalent when their per-
formance is averaged across all possible probability density
functions (pdfs). Wolpert [7] further extended the NFL idea to
supervised learning and concluded that the performance of all
learning algorithms is the same when averaging over all possi-
ble prior probability distributions, i.e., establishing the same av-
erage performance of all optimisation and supervised learning
algorithms across all possible problems. There has been much
subsequent work extending and generalising the NFL theorem.
The reader is referred to www.no-free-lunch.org for details.
However, the NFL theorem only discusses the average per-
formance of algorithms. It does not consider the problem of
how good or bad the performance of a specific algorithm would
be for a given probability distribution. If there exists a probabil-
ity distribution that would dictate bad performance for a spec-
ified algorithm, what does it look like? This paper will address
these two problems. We prove that if the combination functions
are continuous and diverse, then we can construct pdfs based
on Gaussian mixtures in which the combination algorithm will
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yield very bad performance. Although our theorem was
originally constructed for multiple classifier combination, it
can also be generalised to the area of supervised pattern
recognition.

There has also been some research work on constructing ob-
jective functions and probability distributions for theorem prov-
ing. Oltean [8] has explicitly constructed objective functions
where random search outperforms evolutionary algorithms. An-
tos et al. [9] construct probability distributions to prove that
there does not exist a universally superior Bayes error estima-
tion method, no matter how many simulations are performed
and how large the sample sizes are. However, the objective
functions and probability distributions constructed in these pre-
vious works are a little bit ‘strange’, i.e., they are not likely to
be encountered in real-world problems. In this paper, we will
prove the NPT based on constructing probability distributions
of Gaussian mixtures. By virtue of the central limit theorem
[10], Gaussian mixtures are good models for many real-world
problems. Note that we have previously proved this theorem in
the case of two classifiers and two classes [11]. In this paper,
we extend the NPT to cases of multiple classifiers and multiple
classes.

We begin in Section 2 by introducing necessary definitions
and assumptions. Then in Section 3, we prove the NPT. Sec-
tion 4 provides examples of the constructed pdfs in the simplest
case of two classifiers and two classes. Section 5 provides fur-
ther examples in which pdfs other than Gaussian mixtures can
also make the NPT valid. The relation to the NFL theorems is
discussed in Section 6. Finally, Section 7 concludes the paper
and outlines consequential problems that need to be solved in
the future.

2. Background

Suppose there are M classifiers, the task of each being to
assign an input X to one of K classes, wj, w2, ..., wg. Each
classifier generates a set of discriminant functions (or scores),
LX), f2(X), ..., fE(X), respectively. The decision rule in
terms of discriminant functions is

decide X € wg if S = arg rl?% 5 (X).

For these M classifiers, we use fll(X), flz(X), ...,flK(X)
to represent the scores generated by the first classifier,
le (X), f22(X ) P f2K (X) to represent the scores generated
by the second classifier, ..., and fAl,I(X), fAZ,I(X), ...,fAI,[((X)
to represent scores generated by the Mth classifier. Thus, we
obtain M x K score functions. For simplicity, we will use
X1, X2, ..., Xy torepresent these score functions (N =M x K).
If the input has a subscript, such as X;, we will use
X1j,X2j, ..., XNj 1O represent its scores.

Although many different approaches to classifier combina-
tion are possible, in this paper we consider the combination of
these M classifiers to be described as finding a set of combi-
nation functions Fy(x1, xp,...,xy) (k=1,2, ..., K) with the

following decision rule:
K
decide X e wg if S = argr]?aii Fr(x1,x2,...,xN). (1)

A combination function divides the domain D of all points

{x1,x2,...,xn} into K regions, denoted D1, D3, ..., Dg:
K

Dy = {{xl,xz,-n,x/v} argf;laiiFk(Xl,xz,---,xN)= 1} ,
K

D) = {{xl,xz,--.,xzv} argrpai(Fk(xhXZ,-~-7XN)=2} ,
K

Dk = {{xl,xz,...,xN} argr]?ai(Fk(xl,xz,...,xN)zK} .

From decision rule (1), we know that D; (i =1,2,...,K)

is the region that the combination algorithm regards as encom-
passing the ith class.

We define the K joint pdfs of x1, x2, ..., xy given the input

data as

p1(x1, X2, ..., xN) = P(x1,x2, ..., xn | X € @),
p2(x1, X2, .., xN) = P(x1,x2, ..., xn | X € m2),
Prk (X1, X2, ..., xy) = P(x1,x2,...,xn | X € wg).

Then according to our previous definitions, we can obtain the
classification error rate given that the correct class is w; (i =

1,2,..., K) as a function of p;
P (error | w;) = /~ pi(x1,x2, ..., xn)dxpdxy - - - dxy
D;

:1_/ Pi(xl,xz,...,xN)dx]de...de’
D;
(2)

where 5, is the complement of D;

~

Di=DiUDyU---UD;_1UDj;1U---UDkg.

It refers to the region in which the classification is incorrect.
Based on these definitions, the total classification error rate
can be calculated as follows:

K
P (error) = Z P (w;) P (error | w;)
i=1

K
=1—ZP<‘*’I‘)/D pi(xi, ..., xy)dx;---dxy. (3)

i=1

Here, P(w1), P(wy), ..., P(wk) are the prior probabilities
that input data X belong to classes wp, wo, ..., wk, respec-
tively.

In order to build the theorem, two assumptions for the com-
bination functions need to be added.

Assumption 1 (Continuous assumption). For each k €
{1,2, ..., K}, the combination function Fj(x, x,...,xy) is
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