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Abstract

Superposition of radial basis functions centered at given prototype patterns constitutes one of the most suitable energy forms for gradient
systems that perform nearest neighbor classification with real-valued static prototypes. It is shown in this paper that a continuous-time
dynamical neural network model, employing a radial basis function and a sigmoid multi-layer perceptron sub-networks, is capable of
maximizing such an energy form locally, thus performing almost perfectly nearest neighbor classification, when initiated by a distorted
pattern. The proposed design scheme allows for explicit representation of prototype patterns as network parameters, as well as augmenting
additional or forgetting existing memory patterns. The dynamical classification scheme implemented by the network eliminates all
comparisons, which are the vital steps of the conventional nearest neighbor classification process. The performance of the proposed
network model is demonstrated on binary and gray-scale image reconstruction applications.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Nearest neighbor pattern classification is the problem of
evaluating the association map

f (z) = arg min
y∈M

d(z, y) (1)

defined on a pattern space P, where M ⊆ P is a finite
set of prototype patterns and d(·, ·) is a metric on P. A
system that calculates Eq. (1) for given M and z, called
the Nearest Neighbor Classifier (NNC), is the focus of the
design problem in this paper.

A straightforward way of evaluating exactly Eq. (1) for
any given instance (z ∈ P, M ⊆ P) requires computation
of an array of m = |M| distances from z to each y ∈ M ,
then obtaining the index of the minimum element through
comparisons, and finally extracting the pattern y∗ ∈ M
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associated with the resulting index. This three-stage proce-
dure can be implemented easily on digital computers and
it necessitates m evaluations of the metric d(·, ·) together
with m − 1 pairwise comparisons among the distance ar-
ray. In addition to its high computational requirements, the
method also requires the prototype patterns be stored explic-
itly in the physical memory of the system to be extracted
after the comparison phase. A particular case of the problem
for P = {0, 1}n, named the nearest codeword problem, has
been reported in Ref. [1] as NP-complete. This result may
be extended to an arbitrary P.

1.1. Conventional neural associative memory and its
limitations

In the development years of neural network theory, a sin-
gle layer of n discrete neurons within a feedback loop was
facilitated to retrieve binary patterns from their distorted
versions in Ref. [2]. This concept has triggered an enormous
interest in analysis and design of finite-state recurrent neu-
ral networks, since these neurodynamical systems exploit
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the memory storage and recovery property, providing a mo-
tivation towards explaining the biological associative mem-
ory by collective operation of basic computational units. It
is possibly for this reason that, artificial neural systems that
demonstrate the pattern reconstruction property, even par-
tially for some z ∈ P, have been accepted conceptually
as associative memories in the related literature. However,
there is still a significant gap from engineering viewpoint
between NNC, i.e. the ideal associative memory, and neural
associative systems, as detailed below. Based on this fact,
we view the iterative map realized by a recurrent network
model from its initial state vector to the steady state as an
approximation of (1), setting formally the NNC as the ob-
jective on auto-associative memory design.

The way Hopfield Associative Memory (HAM) [2] oper-
ates has indeed three major advantages over the conventional
implementation described above:

(1) The computation of the associative map is left to the
autonomous dynamics of the network, so no comparison
is performed explicitly throughout the process.

(2) The network structure is independent of the number m
of prototypes to be stored.1

(3) Convergence to a fixed point is guaranteed in at most
n2 steps, when the network has symmetric weight pa-
rameters and is operated in asynchronous mode [3].

On the other hand, HAM performs so poor in evaluating (1)
that it hardly qualifies as a binary NNC. One of the several
shortages that one faces in HAM design is that all elements
of an arbitrary M might not be introduced as fixed points of
the network, irrespective of the design strategy adopted. In
fact, complete storage of M in HAM is possible only when
the prototype patterns satisfy certain rules. These constraints
vary from one design method to other, but, as a common
consequence, they impose upper bounds on the cardinality of
M. For example, for the classical outer product rule proposed
in Ref. [2], such a constraint has been reported in Ref. [9] as
m < 0.14n. The absolute bound for symmetric asynchronous
HAM has been estimated experimentally as m < 1.5n in the
work [10], which proposes also a design method to attain
this bound.

Another drawback of HAM is the inevitable occurrence
of spurious fixed points introduced to its state space by the
design method adopted. Unfortunately, neither the number
nor the locations of spurious memories can be found in
advance. Almost all design methods proposed for HAMs
introduce spurious memories, though a set of very strict
conditions on M has been derived for a particular design
method that ensures a spurious-memory-free state space in
Ref. [11].

1 This would have been a really valuable property from information
theoretic point of view, if there would have existed a design method
capable of mapping an arbitrary M as the fixed point set of the network,
which utilizes n2 + n parameters.

Because HAM works in the binary space due to the hard-
limiter-type activations of the computational units in the net-
work, it cannot handle non-binary patterns. This restriction
can be relaxed towards a grid-like finite space by introduc-
ing alternative quantizers, such as a multilevel step [12] or
a complex signum function [13]. Most of the recurrent net-
work models found in the literature beyond HAM to approx-
imate (1) are still finite-state machines. A significant excep-
tion is the M-model [14], whose state space is constrained
within the hypercube [−1, 1]n due to saturated linear activa-
tion functions. However, the design procedure, namely the
eigen-structure method proposed for this model still aims at
storage and recall of binary patterns, i.e. the vertices of the
hypercube.

Most of the limitations mentioned above for HAM in ap-
proximating (1) apply in general for any recurrent network
with a fixed structure independent of the cardinality of M.
They can be explained by an energy function approach to
the network dynamics: A fixed network model may be asso-
ciated only to a fixed form of energy function defined over
its state space, which is minimized locally along trajectories
generated by the network dynamics. In particular, as proven
in Ref. [3], the energy function associated to the HAM model
has a quadratic form, and hence the network is able to recall
a point only if it is designated as a local minimum to this
energy form by a design method. In other words, a given
set M of n-dimensional prototype vectors cannot be stored
altogether as fixed points of HAM, unless there exists a pair
(Q, c) such that the quadratic Q(x)=xTQx+cTx has a local
minimum at each element of M. Similar restrictions apply
for energy forms associated with other recurrent models with
a fixed structure. Therefore, no fixed network model is ca-
pable of handling all possible (unrestricted) prototype com-
binations M ⊆ P in general. For instance, there exists no
single-layer second-order recurrent network that has distinct
fixed points at the three prototypes {[0 0]T, [0 1]T, [1 0]T},
excluding [1 1]T.

1.2. Adaptive network structure and proposed model

In fact, all physical memories, including the biological
ones, have an adaptive structure to store arbitrary patterns
as it is essential for an information system to adapt itself
to the information to be processed. This adaptation may
be in the form of including new (or by removing existing)
processing units. In particular, in order to achieve perfect
storage and recall of an arbitrary M by a neural associative
memory, the design method must not only adjust the network
parameters, but also the network structure. This constitutes
the motivation of this work.

In this paper, we propose a continuous-time gradient neu-
ral network model with adaptive structure that qualifies as an
NNC. The dynamics of the model is defined in the bounded
state space [0, 1]n such that it maximizes an associated scalar
energy function, which is in the form of a sum of Gaussian
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