
Pattern Recognition 40 (2007) 1498–1509
www.elsevier.com/locate/pr

Self-generating prototypes for pattern classification

Hatem A. Fayeda, Sherif R. Hashema, Amir F. Atiyab,∗
aDepartment of Engineering Mathematics and Physics, Cairo University, Giza, Egypt

bDepartment of Computer Engineering, Cairo University, Giza, Egypt

Received 15 February 2006; received in revised form 15 February 2006; accepted 17 October 2006

Abstract

Prototype classifiers are a type of pattern classifiers, whereby a number of prototypes are designed for each class so as they act as
representatives of the patterns of the class. Prototype classifiers are considered among the simplest and best performers in classification
problems. However, they need careful positioning of prototypes to capture the distribution of each class region and/or to define the class
boundaries. Standard methods, such as learning vector quantization (LVQ), are sensitive to the initial choice of the number and the locations
of the prototypes and the learning rate. In this article, a new prototype classification method is proposed, namely self-generating prototypes
(SGP). The main advantage of this method is that both the number of prototypes and their locations are learned from the training set
without much human intervention. The proposed method is compared with other prototype classifiers such as LVQ, self-generating neural
tree (SGNT) and K-nearest neighbor (K-NN) as well as Gaussian mixture model (GMM) classifiers. In our experiments, SGP achieved
the best performance in many measures of performance, such as training speed, and test or classification speed. Concerning number of
prototypes, and test classification accuracy, it was considerably better than the other methods, but about equal on average to the GMM
classifiers. We also implemented the SGP method on the well-known STATLOG benchmark, and it beat all other 21 methods (prototype
methods and non-prototype methods) in classification accuracy.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Prototype classifiers; Nearest neighbor; Learning vector quantization; Self-generating neural trees; Gaussian mixture models

1. Introduction

The simplest and most intuitive approach in pattern clas-
sification is based on the concept of similarity [1,2]. Patterns
that are similar (in some sense) are assigned to the same
class. Prototype classifiers are one major group of classifiers
that are based on similarity. A number of prototypes are de-
signed so as they act as representatives of the typical pat-
terns of a specific class. When presenting a new pattern, the
nearest prototype determines the classification of the pattern.
Two extreme ends of the scale for prototype classifiers are
the nearest neighbor classifier, where each pattern serves as a
prototype, and the minimum distance classifier, where there

∗ Corresponding author. Tel.: +20 2 3354773.
E-mail addresses: h_fayed@eng.cu.edu.eg (H.A. Fayed),

shashem@ieee.org, shashem@mcit.gov.eg (S.R. Hashem),
amiratiya@link.net, amir@alumni.caltech.edu (A.F. Atiya).

0031-3203/$30.00 � 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2006.10.018

is only one prototype (the class center or mean) per class.
Practically speaking, the most successful prototype classi-
fiers are the ones that have a few prototypes per class, thus
economically summarizing all data points into a number of
key centers. Learning vector quantization (LVQ) [3] is prob-
ably the most well-known prototype classifier. Other meth-
ods also include self-generating neural tree (SGNT) [4,5],
which is a hierarchical tree structure, where all the training
patterns (or specifically the misclassified ones) are repeat-
edly presented to the tree until the method correctly classifies
all the patterns. Some other prototype classifiers have also
been developed such as methods that compactly cover each
class region by a set of hyperspheres [6,7] or ones that use
a set of hyperellipsoids [8] or a set of hyperrectangles [9].
Another prototype classifier is the Gaussian mixture model
(GMM), which is based on modeling the class-conditional
densities as a Gaussian mixture [1,10]. The well-known
EM algorithm is used to design such a classifier. Each

http://www.elsevier.com/locate/pr
mailto:hprotect LY1	extunderscore fayed@eng.cu.edu.eg
mailto:shashem@ieee.org
mailto:shashem@mcit.gov.eg
mailto:amiratiya@link.net
mailto:amir@alumni.caltech.edu

H.A. Fayed et al. / Pattern Recognition 40 (2007) 1498–1509 1499

Gaussian component will serve as a prototype. Many of the
prototype classifiers suffer from some drawbacks. For exam-
ple, in LVQ, the optimal number of prototypes is not known
a priori, and it has to be determined by re-running the al-
gorithm several times, each time with a different number of
prototypes. Also, the method is sensitive to the initial proto-
type locations. Consequently, each run with different initial
conditions can lead to a different final solution. The SGNT
method [4,5] is too sensitive to the order of presentation of
the patterns (the patterns presented first are too influential).
Moreover, it is also sensitive to the selected value of the dis-
tance threshold. To overcome these types of problems, a new
method is proposed in this paper. The distinctive feature of
the proposed method is that it does not require any prede-
fined parameters (except those often added to any algorithm
to avoid over-training in real/noisy data problems), and does
not depend on the order of the input patterns. In this method,
both the number of prototypes and their locations are learned
from the training patterns. We do not need to guess a suit-
able number of prototypes, or keep rerunning the algorithm
many times experimenting with different numbers of proto-
types, like in LVQ. The method keeps adding prototypes as
needed, until it stops with a suitable number of prototypes.
In addition, as the simulations show, the number of the re-
sulting prototypes for the proposed method turned out to
be usually less than those for other prototype classification
methods achieving the same accuracy. This also indicates a
more compact solution and a smaller model complexity for
the proposed method.

This paper is organized as follows. The basic idea of
the proposed approach is introduced in the following sec-
tion. Section 3 presents experimental results that examine
the effectiveness of the proposed approach and compares
it to common prototype classification methods. Section 4
presents a discussion of the experimental results, and finally,
in Section 5 conclusions are given.

2. Self-generating prototypes (SGP)

The main idea of this method is to form a number of
groups, each of which contains some patterns of the same
class, and each group’s mean is used as a prototype for the
group. Initially, patterns of each class form a group and their
mean is computed as the initial group’s prototype. We then
successively split some groups, shift some patterns from
one group to another, and possibly merge some groups as a
pruning step. All operations performed are very simple and
can be classified according to the four possible situations
that might occur. These are described in details below:

• If for all patterns of a group the closest prototype is the
group prototype, then no modification is performed.

• If for all patterns of a group the closest prototypes is one
of an incorrect class, this often occurs when patterns of the
group are clustered into subgroups separated by patterns
of other classes, the group is split into two subgroups. This

is accomplished by separating the points by a hyperplane
which passes through the original group’s mean and which
is perpendicular to the first principal component of the
original group’s patterns.

• If for some patterns of a group the closest prototype is a
prototype of a different group but of the same class, these
patterns are shifted from the original group to the group
of that closest prototype.

• If for some patterns of a group the closest prototype is a
prototype of a different group and of an incorrect class,
these patterns are removed from the original group and
form a new group, and its mean is computed as a new
prototype.

In each case, each group mean is recomputed at the end
to update the locations of the prototypes. The whole process
is repeated until no change occurs to the groups. A merg-
ing step could be applied to reduce the number of proto-
types. Groups A and B are merged if both A and B have the
same class and the second closest prototype to the patterns
of group A is the prototype (mean) of group B (PB), and
the second closest prototype to patterns of group B is PA. A
pruning step could also be used to remove redundant proto-
types (whose removal will not affect the classification). In
this step, if the second closest prototypes of all patterns of
a certain group have the same class, the group and its pro-
totype are removed. We call the SGP algorithm that has no
merging and pruning steps as SGP1 and the one that has
the merging and pruning steps as SGP2. Steps of the SGP1
algorithm can be summarized as follows:

Algorithm (SGP1)
Input: N training patterns pairs {xj , C(xj)}, j =
1, 2, . . . , N where C(xj) ∈ {1, 2, . . . , K} is the class
label for pattern xj .
Output: Prototype set {Pk}, k = 1, 2, . . . , M and their
corresponding class labels.
Method:

1. Set Gk = {xj : C(xj) = k}, k = 1, 2, . . . , K .
2. Compute the initial prototypes as Pk=mean(Gk)

and its class label C(Pk) = k, k = 1, 2, . . . , K .
3. Set k = 1, M = K .
4. Compute djs = ‖xj − Ps‖2 ∀xj ∈ Gk, s =

1, 2, . . . , M .
5. Determine the index of the closest prototype to

each pattern xj as i∗j = arg mins (djs).
6. If i∗j = k, ∀xj ∈ Gk go to step 10.
7. If C(Pi∗j) �= C(Pk), ∀xj ∈ Gk , set M = M + 1,

split group Gk into two subgroups Gk and GM

as described above, and update their means: Pk=
mean(Gk), PM = mean(GM), C(PM) = C(Pk),
go to step 4.

8. If C(Pi∗j)=C(Pk), Pi∗j �= Pk for some xj ∈ Gk ,
remove these patterns from Gk and include them
in group Gi∗j . Pk =mean(Gk), Pi∗j =mean(Gi∗j).

Download English Version:

https://daneshyari.com/en/article/531758

Download Persian Version:

https://daneshyari.com/article/531758

Daneshyari.com

https://daneshyari.com/en/article/531758
https://daneshyari.com/article/531758
https://daneshyari.com

