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a b s t r a c t

This paper proposes a novel discriminant semi-supervised feature extraction method for generic clas-
sification and recognition tasks. This method, called inductive flexible semi-supervised feature extrac-
tion, is a graph-based embedding method that seeks a linear subspace close to a non-linear one. It is
based on a criterion that simultaneously exploits the discrimination information provided by the labeled
samples, maintains the graph-based smoothness associated with all samples, regularizes the complexity
of the linear transform, and minimizes the discrepancy between the unknown linear regression and the
unknown non-linear projection. We extend the proposed method to the case of non-linear feature ex-
traction through the use of kernel trick. This latter allows to obtain a nonlinear regression function with
an output subspace closer to the learned manifold than that of the linear one. Extensive experiments are
conducted on ten benchmark databases in order to study the performance of the proposed methods.
Obtained results demonstrate a significant improvement over state-of-the-art algorithms that are based
on label propagation or semi-supervised graph-based embedding.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Feature extraction with dimensionality reduction is an im-
portant step and essential process in embedding data analysis. By
computing an adequate representation of data that has a low di-
mension, more efficient learning and inference [1–4] can be
achieved. There are two main reasons for estimating a low-di-
mensional representation of high-dimensional data: reducing
measurement cost of further data analysis and beating the curse of
dimensionality. The dimensionality reduction can be achieved ei-
ther by feature extraction or feature selection. Feature extraction
refers to methods that create a set of new features based on
transformations and/or combinations of the original features,
while feature selection methods select the most representative
and relevant subset from the original feature set [5]. Feature ex-
traction methods can be classified into two main classes: (1) linear
methods, and (2) non-linear methods. Besides this categorization,
these methods can also be classified into three categories:
(i) supervised, (ii) semi-supervised, and (iii) unsupervised.

The linear techniques have been increasingly important in

pattern recognition [6–8,3] since they permit a relatively simple
mapping of data onto a lower-dimensional subspace, leading to
simple and computationally efficient classification strategies. The
classical linear embedding methods (e.g., PCA, Linear Discriminant
Analysis (LDA), Maximum Margin Criterion (MMC) [9]) and Locally
LDA [10] are demonstrated to be computationally efficient and
suitable for practical applications, such as pattern classification
and visual recognition. PCA projects the samples along the direc-
tions of maximal variances and aims to preserve the Euclidean
distances between the samples. Unlike PCA which is unsupervised,
Linear Discriminant Analysis (LDA) [11,8] is a supervised techni-
que. One limitation of PCA and LDA is that they only see the linear
global Euclidean structure.

The non-linear methods such as Locally Linear Embedding
(LLE) [12] and Laplacian eigenmaps [13] focus on preserving the
local structures. Isomap [14] is a non-linear projection method
that globally preserve the data. It also attempts to preserve the
geodesic distances between samples.

Although the supervised feature extraction methods had been
successfully applied to many pattern recognition applications, they
require a full labeling of data samples. It is well-known that it is
much easier to collect unlabeled data than labeled samples. The
labeling process is often expensive, time consuming, and requires
intensive human involvement. As a result, partially labeled data-
sets are more frequently encountered in real-world problems.
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In the last decade, semi-supervised learning algorithms have
been developed to effectively use limited number of labeled
samples and a large amount of unlabeled samples for real-world
applications [15,16]. In the past years, many graph-based methods
for semi-supervised learning have been developed. The main ad-
vantage of such methods is their ability to identify classes of ar-
bitrary distributions. The use of data-driven graphs has led to
many progresses in the field of semi-supervised learning [17–25].
Toward classification, an excellent subspace should be smooth as
well as discriminative. Hence, a graph-theoretic learning frame-
work is usually deployed to simultaneously meet the smoothness
requirement among nearby points and the discriminative re-
quirement among differently labeled points [26]. In addition to the
use of partial labelling in semi-supervised learning, many re-
searchers use pairwise constraints which can be seen as another
form of side information [27]. These constraints simply indicate
whether two instances are similar (must-link) or dissimilar (can-
not-link). They are usually used for getting a linear or non-linear
embedding by adding them to the criterion derived from un-
labelled data samples [28–31]. The final application is to help
spectral clustering recover from an undesirable partition.

From the point of view of manifold learning, semi-supervised
extensions can generally improve the performance over their su-
pervised counterparts. Nevertheless, despite the success of many
graph-based algorithms in dealing with partially labeled problems
[32], there are still some problems that are not properly addressed.
Almost all semi-supervised feature extraction techniques can
suffer from one of the following limitations:

1. The non-linear semi-supervised approaches do not have, in
general, an implicit function that can map unseen data samples.
In other words, the non-linear methods provide embedding for
only the training data. This is the transductive setting, i.e., the
test set coincides with the set of unlabeled samples in the
training dataset. Indeed, solving the out-of-sample extension is
still an open problem for those techniques adopting non-linear
embedding.

2. Almost all proposed semi-supervised approaches target the
estimation of a linear transform that maps original data into a
low dimensional space. While this simplifies the learning pro-
cesses and gets rid of the out-of-sample problem, there is no
guarantee that such approaches will be optimal for all datasets.
The main reason behind this is that the criterion used is already
a rigid constraint that contains only the linear mapping. Thus,
any coordinate in the low-dimensional space is supposed to be a
linear combination of the original features. For that reason,
these approaches have not the flexibility to adapt their linear
model to a more generic non-linear model.

In addition to the above limitations, it is not clear what would
be the performance of the semi-supervised approaches when
minimal labeling is used. For instance, in the domain of face re-
cognition the so-called one sample problem can be a challenging
issue. In this paper, we propose an Inductive Flexible Semi Su-
pervised Feature Extraction method as well as its kernelized ver-
sion. The aim is to combine the merits of Flexible Manifold Em-
bedding and the non-linear graph based embedding. The proposed
linear method will be flexible since it estimates a non-linear
manifold that is the closest to a linear embedding. The proposed
kernelized method will be also flexible since it estimates the non-
linear manifold that is the closest to a kernel-based embedding. In
both proposed methods, the non-linear manifold as well as the
mapping (linear transform for the linear regression and the kernel
multipliers for the non-linear regression) are simultaneously es-
timated. This simultaneous estimation is the main reason that
makes the proposed frameworks superior to many existing

algorithms as it will be shown in the sequel. We can also notice
that the dimension of the final embedding obtained by the pro-
posed methods is not limited to the number of classes. This allows
the application of any kind of classifiers once the data are em-
bedded in new spaces. In contrast with non-linear dimensionality
reduction approaches, our proposed methods have an obvious
advantage that the learnt subspace has a direct out-of-sample
extension to novel samples, and are thus easily generalized to the
entire high-dimensional input space. The main differences be-
tween our proposed method and the other state-of-the-art ones
are (1) our method is not based on label propagation and (2) it si-
multaneously exploits labeled discrimination information, uses
graph-based smoothness, and estimates a regression function
whose output is close at most to the non-linear model.

The paper is structured as follows. In Section 2, we briefly re-
view the main methods for semi-supervised learning including the
graph-based label propagation and the semi-supervised embed-
ding methods. In Section 3, we introduce the IFSSFE method and
its kernel variant. Section 4 depicts the experimental results ob-
tained with ten real datasets and compares the performance of the
proposed method with those of the competing ones. Finally, in
Section 5 we present our conclusions. In the sequel, capital bold
letters denote matrices and small bold letters denote vectors.

2. Related work

In order to make the paper self-contained, this section will
briefly describe some state-of-the art semi-supervised methods.

2.1. Notation and preliminaries

We define the training data matrix as
= [ … … ] ∈+ +

×( + )X x x x x x, , , , , ,l l l u
D l u

1 2 1 , where | =xi i
l

1 and | = +
+xi i l

l u
1

are the labeled and unlabeled samples, respectively, with l and u
being the total numbers of labeled and unlabeled samples and D
being the feature dimension. Let = +N l u denote the total num-
ber of training samples and nc be the total number of labeled
samples in the cth class and let = [ … ] ∈ ×X x x x, , , l

D l
1 2 be the

labeled samples matrix, with the label of xi as ∈ { … }y C1, 2, ,i ,
where C is the total number of classes. Let ∈ ( + )×( + )S l u l u denote
the graph similarity matrix with ( )S i j, representing the similarity
between xi and xj, i.e., ( ) = ( )S i j sim x x, ,i j . In a supervised context,
one can also consider two similarity matrices Sw and Sb that en-
code the within class and between class graphs, respectively. Sw
encodes the pairwise similarities among samples having the same
label. Thus, ( ) = ( )S i j sim x x, ,w i j if xi and xj have the same class
label; ( ) =S i j, 0w , otherwise. Similarly, Sb encodes the pairwise
similarities among samples having different labels. Thus,

( ) = ( )S i j sim x x, ,b i j if xi and xj have different labels; ( ) =S i j, 0b ,
otherwise. The function ( )sim .,. can be any symmetric function that
measures the similarity between two samples. This can be given
by the cosine or the Gaussian kernel.

For each similarity matrix S, a Laplacian matrix L can be com-
puted. This latter is given by: = −L D S where D is a diagonal
matrix whose elements are the row (or column since the similarity
matrix is symmetric) sums of S matrix. Similar expression can be

found for Lb and Lw. The normalized Laplacian L̂ is defined by
^ = − − −L I D S D1/2 1/2 where Idenotes the identity matrix.

We also define a binary label matrix ∈ ×Y N C associated with
the samples with ( ) =Y i j, 1 if xi has label =y ji ; ( ) =Y i j, 0,
otherwise. Similarly, we can define an unknown label matrix de-

noted by ∈ ×F N C . In a semi-supervised setting, ( )=F F
F

where

=F Y .
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