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a b s t r a c t

In this paper, we develop a novel feature transformation method for supervised linear dimensionality
reduction. Existing methods, e.g., Information Discriminant Analysis (IDA), estimate the first and second
order statistics of the data in the original high-dimensional space, and then design the transformation
matrix based on the information-theoretic criteria. Unfortunately, such transformation methods are
sensitive to the accuracy of the statistics estimation. To overcome this disadvantage, our method de-
scribes the statistical structure of the transformed low-dimensional subspace via a linear statistical
model, which can reduce the number of unknown parameters, while simultaneously maximizes the
mutual information (MI) between the transformed data and their class labels, which can ensure the
between-class separability according to the information theory. The key idea is that we seek the optimal
model parameters, including the transformation matrix, via the joint optimization of MI function and
log-likelihood function, therefore, this method can not only reduce the estimation errors but also
maximize the between-class separability. Experimental results based on synthetic dataset and bench-
mark datasets demonstrate the better performance of our method over other related methods.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

With the rapid development of science and technology and the
emergence of large-scale high-dimensional data, people urgently
need to classify high-dimensional data accurately and efficiently.
In high-dimensional data, some features are redundant for clas-
sification, which not only increase the cost of data processing, but
also seriously affect the accuracy of classification. Therefore, di-
mensionality reduction becomes an important preprocessing step
for high-dimensional data classification. There are two major ca-
tegories of dimensionality reduction methods: feature selection
and feature transform [1]. Feature selection methods only keep
useful features and discard others. Typical examples include Fisher
[2], Relief [3], exhaustive method [2] and so on. Feature transform
methods construct new features from the original variables. Ty-
pical examples include Principal Component Analysis (PCA) [4],
Linear Discriminant Analysis (LDA) [5,6], Median–Mean Line based
Discriminant Analysis (MMLDA) [34], Information Discriminant

Analysis (IDA) [7], Independent Component Analysis (ICA) [25–30].
In this paper we focus on the feature transformation design for

high-dimensional data classification. A feature transform method
is usually coupled with an appropriate criterion, which measures
the joint “importance” of a set of features. If the criterion is dif-
ferentiable with respect to the parameters of the transform, and
the transform is smooth, it is possible to learn the transform by
optimizing the criterion. A well-known feature transform method
is LDA, which maximizes the between-class scattering while
minimizing the within-class scattering of the transformed data [5].
An advantage of LDA is that the transformation matrix can be
found analytically, thereby avoiding numerical optimization.
However, the dimensionality of the transformed space in LDA can
only be less than the number of data classes, which greatly re-
stricts its performance and applications. To overcome this dis-
advantage and improve the robustness on outliers, MMLDA is
proposed based on the traditional LDA method in [34]. The median
mean line is introduced in MMLDA to substitute the original mean
vector in LDA, which is the line through the median sample and
mean vector. Due to the median sample is nearly stable for the
outliers, the median mean line is more robust than the mean
vector to outliers. In addition, since the new defined between-
class scattering matrix in MMLDA is non-singular for any trans-
formed subspace size, then there is no restriction for the trans-
formed space size any more in the MMLDA method. Besides the
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improved versions of LDA, some feature transformation methods
based on the information-theoretic criteria can also improve the
performance of the traditional LDA [8,14]. Tao et al. [8] designs the
transformation matrix by maximizing the mutual information (MI)
between the transformed data and their class labels [1,7,9–11,24].
According to the theoretic analysis [12,13], the larger the MI is, the
tighter the bound of Bayes error rate will be. IDA [7] and the work
of [14] are two typically supervised dimensionality reduction
methods based on the information-theoretic criteria. Since the MI
is very difficult to calculate directly for non-Gaussian distributions,
IDA approximates the entropy of the Gaussian mixture model
(GMM) with the entropy of a global Gaussian distribution, and
provides an approximate expression to the Shannon MI. In the
work of [14], an analytic and explicit expression for the gradient of
the Shannon MI with respect to the transformation matrix is given
for any distribution, thus the Shannon MI can be maximized di-
rectly without any approximation. For convenience, the method in
[14] is referred to as mutual information maximization (MIM) in
this paper. Both methods estimate the first and second order
statistics of the data in the high-dimensional space, and then de-
sign the transformation matrix based on the information-theoretic
criteria. However, in practice, especially in the case of limited data,
it is difficult to accurately estimate these statistics in the original
high-dimensional space. Thus the transformation matrix obtained
may be nonoptimal, which will affect the final classification
performance.

This paper proposes a novel supervised dimensionality reduc-
tion method based on linear statistical model and information-
theoretic criterion, conveniently called enhancing information
discriminant analysis (EIDA). Our method describes the statistical
structure of the transformed low-dimensional subspace via a lin-
ear statistical model, and utilizes the MI based information-theo-
retic criterion to further maximize the between-class separability.
Inspired by IDA, our method seeks the optimal model parameters,
including transformation matrix, via the joint optimization of MI
function and log-likelihood function. The main contributions of
this paper are summarized in the following.

1) In our linear statistical model, the original high-dimensional
sample is represented as the linear combination of low-dimen-
sional feature and additive measurement noise. based on such a
linear model, the statistics can be estimated in the low-dimen-
sional subspace. therefore, the estimation errors can be reduced
due to the lower freedom of unknown parameters, compared with
those got from the original high-dimensional data space, espe-
cially in the case of limited data. 2) in our optimization algorithm,
the joint optimization designs the transformation matrix and es-
timates the data statistics simultaneously. Therefore, we can not
only ensure the between-class separability, but also describe the
observed data as accurately as possible.

Here we give Table 1 to list all notations in our EIDA model to
help readers to understand the dimensions of matrices and defi-
nitions of notations clearly.

The remainder of the paper is organized as follows: Section 2 is
a brief overview of Bayesian classification, MI, and IDA. Section 3
introduces EIDA. A complete algorithm is developed and presented
in this section with some detailed derivations given in Appendix.
Section 4 describes some related methods. In Section 5, we vali-
date the performance of our method on synthetic dataset and
some benchmark datasets. Section 6 summarizes the paper by
presenting some concluding remarks.

2. Background

2.1. Bayesian classification

The Bayesian classifier [2] is often used to evaluate the perfor-
mance of a supervised dimensionality reduction method. For a
discrete-valued class variable C and a continuous feature variable
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where T denotes the transpose of a vector or a matrix. If the
covariance matrices for all of the classes are identical, i.e.,
Σ Σ= ∀ =k K, 1, 2, ... ,y yk . In this case, from Eq. (2), we have
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where the resulting discriminant functions are linear. A Bayesian
classifier that uses linear discriminant functions is called a linear
Bayesian classifier.

Another simple case arises when the covariance matrices are
different for each category, then, Eq. (2) can be written as
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Table 1
List of notations in the EIDA model.

d: Dimensionality of original data
m: Dimensionality of low-dimensional latent feature
Nk: Data size of training sample for class k
n: Number of total samples (include training samples and test samples)

∈ ×x d 1: Original data

∈ ×y m 1: Low-dimensional latent feature of x

∈ ×A d m: Transformation matrix

ε ∈ ×d 1: Measurement noise

ψ ∈ ×k
d d: Diagonal matrix of the noise covariance on class k

∈ ×Fk
d d: Prior precision matrix for original data from class k

∈ ×xki
d 1: ith data from class k

∈ ×yki
m 1: Low-dimensional latent feature of xki

μ ∈ ×xk
d 1: Prior mean vector for original data from class k

Σ ∈ ×xk
d d: Prior covariance matrix for original data from class k

μ ∈ ×yk
m 1: Condition posterior mean vector for latent feature from class k

Σ ∈ ×yk
m m: Condition posterior covariance matrix for latent feature from class

k
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