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a b s t r a c t

We propose a Sparse exponential family Principal Component Analysis (SePCA) method suitable for any
type of data following exponential family distributions to achieve simultaneous dimension reduction and
variable selection for better interpretation of the results. Because of the generality of exponential family
distributions, the method can be applied to a wide range of applications, in particular when analyzing
high dimensional next-generation sequencing data and genetic mutation data in genomics. The use of
sparsity-inducing penalty helps produce sparse principal component loading vectors such that the
principal components can focus on informative variables. By using an equivalent dual form of the for-
mulated optimization problem for SePCA, we derive optimal solutions with efficient iterative closed-
form updating rules. The results from both simulation experiments and real-world applications have
demonstrated the superiority of our SePCA in reconstruction accuracy and computational efficiency over
traditional exponential family PCA (ePCA), the existing Sparse PCA (SPCA) and Sparse Logistic PCA
(SLPCA) algorithms.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Dimension reduction methods are widely used for many data
analytic applications such as computer vision, data mining, and
bioinformatics. In addition to deriving low dimensional projec-
tions for model complexity reduction and reproducibility of
learning results, people often would like to know the physical
meanings of the original variables and how they contribute to
these projections. For example, when analyzing images, it is of
much interest to know which image regions are crucial to re-
present or capture the essential information contained in the given
images. Identifying variables expressing the maximum data var-
iation will also be of much interest for next-generation sequencing
data analysis since it would help greatly reduce the profiling cost
for biomarker discovery. To achieve these goals in diverse real-
world applications, one faces two critical challenges: how to
handle diverse data types arising from different applications and
how to obtain meaningful interpretation of analysis results. Ex-
ponential family PCA (ePCA) methods [1–3] and Sparse PCA (SPCA)
methods [4–7] are well known to address these two issues sepa-
rately. However, to the best of our knowledge, it seems that no one
has proposed a method to address these two issues simulta-
neously. In this paper, we propose a Sparse exponential family PCA

(SePCA) method for dimension reduction with both the capability
of addressing the interpretation issue and the generality of ap-
plications to any type of data following exponential family
distributions.

For probabilistic interpretation, ePCA aims to find the low-di-
mensional projections of a set of canonical parameters that max-
imize the likelihood of the observed data. PCA is a special case of
ePCA by assuming that the conditional probability of each data
point given its corresponding canonical parameters—mean vec-
tors—follows a Gaussian distribution. By extending the Gaussian
distribution of the conditional probability to other members of the
exponential family, ePCA naturally generalizes PCA to be more
suitable to handle various data types, including binary and count
data for example, other than continuous data that is often as-
sumed to follow a Gaussian distribution. To achieve better per-
formance for dimension reduction, an appropriate assumption of
the distribution for a given certain data type is desirable. For ex-
ample, Bernoulli distribution is appropriate for binary data, mul-
tinomial distribution for categorical data, and Poisson distribution
for count data. This generalization of PCA is analogous to the ex-
tension of ordinary linear regression models to Generalized Linear
Models (GLM) [8]. However, ePCA still suffers from the inter-
pretation issue of PCA, which motivates us to derive SePCA by
introducing sparsity regularization to the loading vectors. The
sparsity could be achieved by adding a regularization term on
loading vectors to the objective function of ePCA, which is similar
to the way of formulating sparsity regularized GLMs.
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Finding an efficient algorithm to solve SePCA is challenging due
to a couple of mixed difficulties from SPCA and ePCA from the
involved non-convex constraints and the non-convex complex
objective function of multiple variables. It has always been chal-
lenging to solve either ePCA or SPCA, not to mention solving them
simultaneously in SePCA. Several approaches have been proposed
to solve either ePCA or SPCA [1,3–6,9,10]. A generic algorithm di-
rectly optimizes the objective function of ePCA [1,2]; however, it is
inefficient to deal with non-quadratic and complex likelihood
functions for many exponential family members. An alternative
effective way is to optimize an auxiliary function of the log-like-
lihood to achieve the solutions by approximating the objective
function with its lower bound. Majorization–Minimization (MM)
algorithm [11,12] has been applied to efficiently solve Sparse Lo-
gistic PCA (SLPCA) for binary data with closed-form updating rules
[9]. However, it is hard to find appropriate auxiliary functions that
can lead to efficient closed-form updating rules for other members
of the exponential family such as multinomial distribution and
Poisson distribution. Recently, Guo and Schuurmans [3] have
proposed an efficient algorithm to solve ePCA by transforming the
regularized primal problem to an equivalent dual problem with
the optimal solution found at the stationary point. Following this
idea, we transform the SePCA problem to a dual problem, in which
the objective function with respect to the Principal Components
(PCs) and the principal component loading vectors has a similar
form as the sparse PCA problem formulated by Shen and Huang
(sPCA_rSVD) [6]. We can then solve the SePCA problem by alter-
nately updating unknown variables using efficient closed-form
updating rules that lead to favorable computational efficiency.

The rest of the paper is organized as follows. Section 2 briefly
reviews classical PCA in a probabilistic modeling framework, from
which it could be naturally extended to ePCA. We also introduce
the SPCA problem and the algorithm for solving it at the end of
this section. Section 3 describes the formulation of SePCA, with an
efficient alternative updating algorithm to solve it. The computa-
tional complexity analysis of the solution algorithm is also pro-
vided. Section 4 illustrates the performance of SePCA compared
with Zou's SPCA [5] and a previous SLPCA method [9] via the ex-
periments on both simulated and real-world data. Section 5 con-
cludes the paper and discusses our future directions.

2. Related work

In this section, we review relevant concepts and probabilistic
models that form the foundations of SePCA. We introduce PCA
from a probabilistic modeling perspective and naturally extend it
to the exponential family. From this point of view, PCA is for-
mulated as a Maximum-Likelihood Estimation (MLE) problem,
which estimates the low-dimensional projections of a set of ca-
nonical parameters by assuming that the conditional probability of
each data point given its canonical parameters follows a Gaussian
distribution [13]. Similarly, the ePCA tailored to some other types
of data could also be modeled as such a MLE problem by assuming
that the conditional probability follows a corresponding distribu-
tion in the exponential family other than Gaussian. To give a flavor
of SePCA, we introduce SPCA as a simple case and discuss an ef-
ficient strategy to solve it at the end of this section.

2.1. Principal component analysis

Given a set of samples … ∈ x x, , N
D

1 , PCA projects the data into
a principal-component subspace with a lower dimension ( ≤ )L D
and meanwhile attempts to preserve the maximum data variation.
An alternative interpretation of PCA from a probabilistic perspec-
tive assumes that the data points are approximated by linear

projections of low-dimensional latent variables plus a Gaussian
noise. For each sample xn ( ≤ ≤ )n N1 , given its corresponding
vector of latent variables zn that lies in the principal-component
subspace, we assume

ϵ= + +x z bW ,n
T

n

where W is a principal loading matrix whose rows span the
principal-component subspace; b is a bias vector and ϵ follows a
Gaussian distribution σ( )N I0, 2 . Assuming a vector of canonical
parameters θ = +z bWn

T
n , the conditional probability of xn given

θn is then represented as:

θ θ σ( | ) ∼ ( | )x xp N I,n n n n
2

and the conditional probability of xn given zn is:

σ( | ) ∼ ( | + )x z x z bp N W I, .n n n
T

n
2

PCA is then formulated as an optimization problem of maximizing
the log-likelihood of the data set with respect to zn, W, and b,
where the objective function is:

∑ − ∥ − ( + )∥ =
( )

x z bW WW Is. t.
1n

n
T

n
T2

up to a constant. Obviously, this problem is equivalent to mini-
mizing the sum of Euclidean distances from data points to their
projections in the principal-component subspace, which is exactly
the other interpretation of PCA [14].

2.2. Exponential family PCA

From a probabilistic perspective, it is natural to generalize PCA
to the exponential family. In the exponential family, a probabilistic
latent variable model representing the conditional distribution of a
data sample xn has such a general form [1]:

θ θ θ( | ) = ( + ( ) − ( )) ( )x x xp q Aexp log , 2n n n
T

n n n

where θn denotes the corresponding canonical parameters corre-
sponding to the sample xn. ( )xA n is the log-normalization factor
with the form based on the base measure

∫ θ( ) ( ) ( )x x x xq q d: log expn n
T

n n n, which ensures that the sum of the
conditional probabilities over the domain of xn equals 1. The
probability distribution functions for the members in the ex-
ponential family are mainly differentiated by the form of (·)A
function. Consequently, the data log-likelihood with respect to the
canonical parameters may be of a quadratic form (for Gaussian) or
not (for others). Taking Gaussian for instance, θ( )A n takes a form of
θ /2n

2 to ensure a Gaussian distribution function. Then, its data log-
likelihood function given θ is equivalent to

∑ θ− ∥ − ∥
( )

x
3n

n n
2

up to a constant. The canonical parameters θn are further para-
meterized with a form of +z bWT

n using lower-dimensional latent
variables zn, principal loading matrix W and a bias vector b for
dimension reduction. After substituting θn into (3), we arrive at (1),
which is exactly the objective function of PCA derived by MLE.

In general, ePCA can be achieved by maximizing the general-
ized likelihood based on a general form of the probability function
shown in (2). After substituting θn by zn, W, and b, ePCA is then
formulated as the following problem:

∑ ( + ) − (( + ) )
( )=

z b bA W ZW X1min min tr ,
4bZ W WW I n

T
n

T T

, : T

where Z is the ×N L principal component score matrix whose n-th
row is zn. A probabilistic graphical model to illustrate ePCA is
shown in Fig. 1. Note that the principal component subspace is
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