
Flexible constrained sparsity preserving embedding

L. Weng a,b, F. Dornaika b,c,n, Z. Jin a

a School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
b University of the Basque Country UPV/EHU, San Sebastian, Spain
c IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

a r t i c l e i n f o

Article history:
Received 29 February 2016
Received in revised form
15 June 2016
Accepted 28 June 2016
Available online 30 June 2016

Keywords:
Constrained embedding
Sparsity preserving projections
Flexible manifold embedding
Semi-supervised learning
Out-of-sample problem

a b s t r a c t

In this paper, two semi-supervised embedding methods are proposed, namely Constrained Sparsity
Preserving Embedding (CSPE) and Flexible Constrained Sparsity Preserving Embedding (FCSPE). CSPE is a
semi-supervised embedding method which can be considered as a semi-supervised extension of Sparsity
Preserving Projections (SPP) integrated with the idea of in-class constraints. Both the labeled and un-
labeled data can be utilized within the CSPE framework. However, CSPE does not have an out-of-sample
extension since the projection of the unseen samples cannot be obtained directly. In order to have an
inductive semi-supervised learning, i.e. being able to handle unseen samples, we propose FCSPE which
can simultaneously provide a non-linear embedding and an approximate linear projection in one re-
gression function. FCSPE simultaneously achieves the following: (i) the local sparse structures is pre-
served, (ii) the data samples with a same label are mapped onto one point in the projection space, and
(iii) a linear projection that is the closest one to the non-linear embedding is estimated. Experimental
results on eight public image data sets demonstrate the effectiveness of the proposed methods as well as
their superiority to many competitive semi-supervised embedding techniques.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In many real world applications, such as face recognition and
text categorization, the data are usually provided in a high di-
mension space. In many real-world problems, collecting a large
number of labeled samples is practically impossible. The reasons
are twofold. Firstly, these labeled samples can be very few. Sec-
ondly, acquiring labels requires expensive human labor. To deal
with this problem, semi-supervised embedding methods can be
used to project the data in the high-dimensional space into a space
with fewer dimensions.

A lot of methods for dimension reduction have proposed.
Principal Component Analysis [1] (PCA) and Multidimensional
Scaling [2] (MDS) are two classic linear unsupervised embedding
methods. Linear Discriminant Analysis [1] (LDA) is a supervised
method. In 2000, Locally Linear Embedding [3] (LLE) and Isometric
Feature Mapping (ISOMAP) [4] were separately proposed in science
which laid a foundation of manifold learning. Soon afterward,
Belkin et al. proposed Laplacian Eigenmaps [5] (LE). He et al.
proposed both Locality Preserving Projection [6] (LPP), essentially
a linearized version of LE, and Neighborhood Preserving Embed-
ding [7] (NPE), a linearized version of LLE. LPP and NPE can be

interpreted in a general graph embedding framework with dif-
ferent choices of graph structure. Most of these methods are un-
supervised methods. Afterwards, sparse representation [8–10]
based methods have attracted extensive attention. Lai et al. pro-
posed a 2-D feature extraction method called sparse 2-D projec-
tions for image feature extraction [11]. In [12], a robust tensor
learning method called sparse tensor alignment (STA) is then
proposed for unsupervised tensor feature extraction based on the
alignment framework. In [13], multilinear sparse principal com-
ponent analysis (MSPCA) inherits the sparsity from the sparse PCA
and iteratively learns a series of sparse projections that capture
most of the variation of the tensor data.

Sparsity Preserving Projection (SPP) is an unsupervised learn-
ing method [10]. It can be considered as an extension to NPE since
the latter has a similar objective function. However, SPP utilizes
sparse representation over the whole data to obtain the affinity
matrix.

In the last decade, semi-supervised learning algorithms have
been developed to effectively utilize a large amount of unlabeled
samples as well as the limited number of labeled samples for real
world applications [14–22]. In the past years, many graph-based
methods for semi-supervised learning have been developed [23–
35].

Constrained Laplacian Eigenmaps [36] (CLE) is a semi-su-
pervised embedding method. CLE constrains the solution space of
Laplacian Eigenmaps only to contain embedding results that are
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consistent with the labels. Labeled points belonging to the same
class are merged together, labeled points belonging to different
classes are separated, and similar points are close to one another.
Similarly, Constrained Graph Embedding [37] (CGE) tries to project
the data points from a same class onto one single point in the
projection space with a constraint matrix.

Flexible Manifold Embedding [38] (FME) is a label propagation
method. FME simultaneously estimates the non-linear embedding
of unlabeled samples and the linear regression over these non-
linear representations. In [39], the authors propose a whole
learning process that can provide the data graph and a linear re-
gression within a same framework.

SPP is a successful unsupervised learning method. To extend
SPP to a semi-supervised embedding method, we introduce the
idea of in-class constraints in CGE into SPP and propose a new
semi-supervised method for data embedding named Constrained
Sparsity Preserving Embedding (CSPE). The weakness of CSPE is
that it can not handle the new coming samples which means a
cascade regression should be performed after the non-linear
mapping is obtained by CSPE over the whole training samples.
Inspired by FME, we add a regression term in the objective func-
tion to obtain an approximate linear projection simultaneously
when non-linear embedding is estimated and proposed Flexible
Constrained Sparsity Preserving Embedding (FCSPE). So in this
paper, two semi-supervised embedding methods namely CSPE and
FCSPE are proposed. Compared to the existing works, the proposed
CSPE retains the advantages of both CGE and SPP. On the other
hand, the proposed FCSPE simultaneously estimates the non-linear
mapping over the training samples and the linear projection for
solving the out-of-sample problem, which is usually not provided
by existing graph-based semi-supervised non-linear mapping
methods.

This paper is organized as follows. Section 2 reviews the related
methods including LPP, SPP, CGE and FME. Section 3 introduces the
two proposed semi-supervised methods. Section 4 presents per-
formance evaluations on six face image databases: Yale, ORL,
FERET, PIE, Extended Yale B and LFW (the original version and the
aligned version), one handwriting image database USPS and an
object image database COIL-20. Section 5 presents some con-
cluding remarks.

2. Related work

Some mathematical notations are listed and will be used in the
next several sections. Let R= [ … ] ∈ ×X x x x, , , n

m n
1 2 be the data

matrix, where n is the number of training samples and m is the
dimension of each sample. Let = [ … ]y y yy , , , n

T
1 2 be a one-di-

mensional map of X. Under a linear projection =y p XT T , each data
point xi in the input space Rm is mapped into =y p xi

T
i in the real

line. Here R∈p m is a projection axis. Let R∈ ×Y d n be the data
projections in a d dimensional space.

2.1. Locality preserving projection

Locality Preserving Projection [6] (LPP) is a classic unsupervised
embedding method which aims to preserve the local structure of
the data by keeping two sample points close in the projection
space when they are similar in the original space. The reasonable
criterion of LPP is to optimize the following objective function
under some constraints:

∑ ( − )
( )

y y Wmin ,
1i j

i j ij
,

2

where W is the affinity matrix associated with the data and Wij

represents the similarity between sample xi and sample xj. Esti-
mating the graph affinity W from data can be carried out by many
graph construction methods [40]. The simplest method is based on
the use of KNN graph.

The definition of KNN graph is as follows:

δ δ
=

∈ ( ) ∈ ( )

( )

⎧⎨⎩W
x x x x1, or ,

0 otherwise, 2
ij

i k j j k i

where δ ( )xk i means a set of the k neighbors of xi.
After some simple algebraic formulations, we obtain:

∑ ( − ) =
( )

y y W p XL X p2 ,
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T T

,
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where = −L D W is the Laplacian matrix and D is a diagonal
matrix with = ∑D Wii j ij.

With the constraint =p X D X p 1T T , the problem becomes:

( )
p X L X p
p X D X p

min .
4

T T

T Tp

The optimal p is given by solving the minimum eigenvalue pro-
blem:

λ= ( )X L X p X D X p. 5T T

The eigenvectors …p p, , d1 corresponding to the d smallest ei-
genvalues are then used as the columns of the projection matrix P,
i.e. = [ … ]P p p, , d1 . The projected samples are obtained by =Y P XT .

2.2. Sparsity preserving projection

As LPP tries to preserve the neighborhood structure, Sparsity
Preserving Projection [9,10] (SPP) aims to keep the structure over
the whole data set by using sparse representation instead of the
linear representation of k nearest neighbors to get the weight
matrix. For xi, the representative coefficients of the rest samples
are obtained by solving an ℓ1 problem:

∥ ∥

= ( )

s

x X s

min ,

s. t. , 6
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i i
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where = [ … … ]( − ) ( + )s s s ss , , , 0, , ,i i i i i i in
T

1 1 1 . The problem of SPP is:
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With the constraint =p X X p 1T T , Eq. (7) becomes:

( − − + ) =
˜

( )
p X I S S S S X p

p X X p
p X SX p
p X X p

min max ,
8

T T T T

T T

T T

T Tp p

where ˜ = + −S S S S ST T , and = [ … ]S s s, , n
T

1 . The corresponding
eigenvalue problem is:

λ˜ = ( )X S X p X X p. 9T T

The eigenvectors …p p, , d1 corresponding to the d largest eigen-
values are the columns of the sought linear transform, i.e.,

= [ … ]P p p, , d1 , and =Y P XT .

2.3. Constrained Graph Embedding

Constrained Graph Embedding [37] (CGE) is a semi-supervised
non-linear embedding method which uses the label information
as additional constraints mapping the samples with a same label
to one point in the projection space. We assume that the first l
samples are with labels from c classes. In the projection space, a
constraint matrix U is used to keep the samples with a same label
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