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a b s t r a c t

Recently, some L1-norm-based principal component analysis algorithms with sparsity have been pro-
posed for robust dimensionality reduction and processing multivariate data. The L1-norm regularization
used in these methods encounters stability problems when there are various correlation structures
among data. In order to overcome the drawback, in this paper, we propose a novel L1-norm-based
principal component analysis with adaptive regularization (PCA-L1/AR) which can consider sparsity and
correlation simultaneously. PCA-L1/AR is adaptive to the correlation structure of the training samples
and can benefit both from L2-norm and L1-norm. An iterative procedure for solving PCA-L1/AR is also
proposed. The experiment results on some data sets demonstrate the effectiveness of the proposed
method.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Dimensionality reduction [1] is of great importance in many
applications, e.g., pattern recognition, text categorization and
computer vision where the dimensionality of data is often very
high. It can reduce the computational complexity and discover the
intrinsic manifold structure of high-dimensional data. Principal
component analysis (PCA) [1,2] is perhaps the most famous di-
mensionality reduction technique due to its simplicity and effec-
tiveness. Generally, PCA finds a set of projection vectors such that
the variance of the projected data points is maximized. By pro-
jecting the data onto the set of projection vectors, the data
structure in the original input space can be discovered.

Every projection vector obtained by PCA is a nonzero linear
combination of all the data, and then each variable in data point is
regarded as equally important in dimensionality reduction. Hence,
the extracted features obtained by PCA are difficult to interpret.
The original variables in the high-dimensional data, however, have
meaningful physical interpretation in many applications. In this
case, the interpretation of the obtained projection vectors can be
enhanced if the obtained projection vectors involve more zero
entries.

As a consequence sparse PCA (SPCA) [3], which reformulates
the conventional PCA as a regression-type optimization problem
with the elastic net regularization, has been proposed and can gain

good experiment results. Some different implementations of SPCA
have also proposed [4,5]. SPCA has gained success in many ap-
plications for extracting interpretable principal components. By
using structured regularization, Jenatton et al. [6] generalized
SPCA to structured sparse PCA.

However, the objective functions of the above mentioned PCA
and SPCA are both based on L2-norm, which makes these methods
to be sensitive to noise and outliers since the square operation in
L2-norm will exaggerate the effect of noise and outliers. It is
generally believed that L1-norm is more robust to noise and out-
liers than L2-norm. Then, in recent years, some L1-norm-based
principal component analysis methods have been developed in the
literature [7–17]. Due to the use of the absolute value operator in
L1-norm, however, it is much more difficult to obtain the optimal
projection vectors of L1-norm-based PCA than those of L2-norm-
based PCA.

Recently, Kwak [11] proposed the PCA-L1 method, which is also
based on L1-norm and rotational invariant. A greedy iterative al-
gorithm for solving PCA-L1 is also presented in [11]. Experiment
results on data sets shows the effectiveness of PCA-L1. Nie et al.
[13] proposed a non-greedy procedure to calculate the projection
vectors of PCA-L1. Nie's method can obtain all the projection
vectors of PCA-L1 simultaneously while the original PCA-L1
method obtains the projection vectors one by one. Li et al. [8]
proposed the L1-norm-based 2DPCA algorithm (2DPCA-L1), which
is a robust version of the 2DPCA method [18]. Further, Pang et al.
[12] proposed the L1-norm-based tensor PCA method (TPCA-L1).
Motivated by Nie's non-greedy PCA-L1, Wang et al. [16] and Cao

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

http://dx.doi.org/10.1016/j.patcog.2016.07.014
0031-3203/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: luguifu_tougao@163.com (G.-F. Lu).

Pattern Recognition 60 (2016) 901–907

www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2016.07.014
http://dx.doi.org/10.1016/j.patcog.2016.07.014
http://dx.doi.org/10.1016/j.patcog.2016.07.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2016.07.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2016.07.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2016.07.014&domain=pdf
mailto:luguifu_tougao@163.com
http://dx.doi.org/10.1016/j.patcog.2016.07.014


et al. [17], respectively, proposed the non-greedy versions of
2DPCA-L1 and TPCA-L1.

In order to improve the interpretation of the basis vectors of
PCA-L1, Meng et al. [14] proposed a sparse PCA-L1 method called
PCA-L1 with sparsity (PCA-L1S). Not only the objective function of
PCA-L1S is based on L1-norm, but the basis vectors are also pe-
nalized by L1-norm. Similarly, Wang et al. [7] proposed 2DPCA-L1
with sparsity (2DPCA-L1S).

The L1-norm regularization can work optimally on high-di-
mensional low-correlation data [19–22]. However, there are var-
ious correlation structures among a lot of data. In this situation,
the L1-norm regularization encounters instability problems. Re-
cently, trace Lasso [19,23–25] has been proposed to remedy this
instability problem. Trace lasso is adaptive and interpolates be-
tween L1-norm and L2-norm.

In this paper, we use trace Lasso to regularize the basis vectors
of PCA-L1 and propose a novel L1-norm-based principal compo-
nent analysis, called PCA-L1 with adaptive regularization (PCA-L1/
AR). PCA-L1/AR, which can consider sparsity and correlation si-
multaneously, is adaptive to the correlation structure and can
benefit both from L2-norm and L1-norm. We also present an
iterative algorithm for solving PCA-L1/AR. The experiments on
some publicly available data sets confirm the effectiveness of the
proposed method.

The remainder of the paper is organized as follows. In Section
2, we review briefly the PCA and PCA-L1 techniques. In Section 3,
we propose the PCA-L1/AR approach, including its objective
function and algorithmic procedure. The experiment results are
reported in Section 4. Finally, we conclude the paper in Section 5.

2. Outline of PCA, PCA-L1 and PCA-L1S

Let = { } ∈ ×X Rx x x, , .. . , n
d n

1 2 be a d-dimensional sample set
with n elements. Without loss of generality, we assume that X has
been centered. The classical PCA method (termed as PCA-L2) aims
to maximize the variance of data points in the projected subspace.
The optimal projection vector ∈ Rw d can be obtained by solving
the following criterion function:

( )=
Sw wmax

1
T

t
w w 1T

where =S XXt n
T1 is the covariance matrix. The optimal subspace of

PCA is spanned by the eigenvectors of St corresponding to the
largest m eigenvalues. Eq. (1) can be reformulated as
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Xwmax

1
2
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where ‖•‖2 denotes the L2-norm of a vector.
Obviously the conventional PCA is based on L2-norm. In [11],

Kwak proposed PCA-L1, where L2-norm in PCA-L2 is replaced with
L1-norm. Then the robustness to noise and outliers of PCA-L2 is
improved. PCA-L1 aims to maximize the following objective
function

‖ ‖ ( )=
Xwmax

3
T

w w 1
1

T

where ‖•‖1 denotes the L1-norm of a vector. Kwak proposed a
greedy iterative procedure to compute w since it is difficult to
solve Eq. (3) directly.

In order to improve the interpretation of the basis vectors of
PCA-L1, Meng et al. [14] proposed PCA-L1S, where L1-norm is not
only used in the objective function, but also used to regularize the
basis vector of PCA-L1. PCA-L1S aims to solve the following opti-
mization problem

‖ ‖ = ‖ ‖ < ( )X kw w w wmax , subject to 1, 4T T
1 1

where k is a positive integer. An efficient iterative procedure to
solve Eq. (4) is also presented in [14].

3. L1-norm-based principal component analysis with adaptive
regularization (PCA-L1/AR)

3.1. Problem formulation

In this subsection, we will present our proposed L1-norm-
based principal component analysis with adaptive regularization
(PCA-L1/AR).

The L1-norm regularization will encounter stability problems if
the data samples exhibit strong correlations [19]. In this paper, we
impose the trace norm onto w inspired by [19]. Specifically, we
integrate the trace norm into the objective function of PCA-L1 and
the objective function of PCA-L1/AR is formulated as

λ‖ ‖ − ‖ ( )‖* ( )X X Diagw warg max 5
T T

w
1

or

λ‖ ( )‖* − ‖ ‖ ( )X Diag Xw warg min 6
T T

w
1

where ‖•‖* denotes the trace norm of a matrix, i.e., the sum of its
singular values, (•)Diag denotes to convert a vector into a diagonal
matrix. In Section 3.2, we will introduce how to solve the objective
function of PCA-L1/AR, i.e., Eq. (6). The main difference between
trace norm ‖ ( )‖*X Diag wT and other norm, e.g. L1-norm and L2-
norm, is that ‖ ( )‖*X Diag wT contains the data sample matrix X.
‖ ( )‖*X Diag wT is adaptive to the correlation structure and inter-
polates between L1-norm and L2-norm [19]. If =XX IT , i.e., the
data are uncorrelated, then we have

‖ ( )‖* = ( ( )) ( ( ))

= ( ) ( ) = ‖ ‖ ( )

⎡⎣ ⎤⎦
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Thus, the trace norm regularization, i.e., ‖ ( )‖*X Diag wT , is equal
to the L1-norm. If =X 1x1, i.e., the data are highly correlated,
where x1 denotes the first row of X and ∈ R1 d is a column vector
taking one at each entry, then we have

‖ ( )‖* = ‖( ) ‖*
= ‖ ‖‖ ‖ = ‖ ‖ ( )

X Diag w x w

x w w 8

T T1

1
2 2

Thus in the case ‖ ( )‖*X Diag wT is equal to the L2-norm. For other
cases, trace Lasso interpolates between the L1-norm and L2-norm
depending on correlations [19], i.e.,

‖ ‖ ≤ ‖ ( )‖* ≤ ‖ ‖ ( )X Diagw w w 9T
2 1

This means that trace Lasso can benefit both from L2-norm and
L1-norm according to the correlations among data.

3.2. Optimization procedure for PCA-L1/AR

Motivated by the optimization method used in [26], we use the
augmented Lagrange multiplies (ALM) method [27] to solve Eq.
(6). In [27], the ALM method is introduced for solving the fol-
lowing constrained optimization problem:

( ) ( ) = ( )f X s t h Xmin . . 0 10

where →f R R: n and →h R R: n m. We can define the augmented
Lagrangian function to solve Eq. (10):
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