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a b s t r a c t

While there are a large amount of clustering algorithms proposed in the literature, the clustering results
of existing algorithms usually depend on user-specified parameters heavily, and it is usually difficult to
determine the optimal parameters. With the pairwise data similarity matrix as the input, dominant sets
clustering has been shown to be an effective data clustering and image segmentation approach, partly
due to its ability to find out the underlying data structure and determine the number of clusters auto-
matically. However, we find that the original dominant sets algorithm is sensitive to the similarity
measures used in building the similarity matrix. This means that parameter tuning is required to gen-
erate satisfactory clustering results, and dominant sets clustering results are also parameter dependent.
In order to remove the dependence on the user-specified parameter, we study how the similarity
measures influence the dominant sets clustering results. As a result, we propose to transform similarity
matrices by histogram equalization before clustering. While this transformation is shown to remove the
sensitiveness to similarity measures effectively, it also results in over-segmentation. Therefore in the next
step we present a cluster extension method to overcome the over-segmentation effect and generate
more reasonable clustering results. We test the enhanced clustering algorithm in both data clustering
and image segmentation experiments, and comparisons with the state-of-the-art algorithms validate the
effectiveness of our algorithm.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering is widely used in various fields, including pattern
recognition and image processing, etc. There have been a large
amount of clustering algorithms in the literature, and some tra-
ditional clustering algorithms include k-means, BIRCH, DBSCAN
[1], EM (Expectation Maximization) and CLIQUE [2]. In recent
years, spectral clustering, e.g., normalized cuts (NCuts) [3],
receives a lot of attention. Spectral clustering groups data into
clusters based on the eigen-structure of the pairwise data simi-
larity matrix. Another popular clustering algorithm is the so-called
affinity propagation [4], which finds out the cluster members as
the result of affinity messages passing among input data. In [5] the
authors present a density peak based method, which uses the local
density and minimum distance to higher density of each data to
identify cluster centers and then assign other data to clusters.

Some other important progresses in clustering and its application
in image segmentation include [6–13].

Although there are a lot of clustering algorithms proposed from
different perspectives and designed for different purposes, existing
algorithms usually require user-specified parameters as input, and
their clustering performance depends heavily on these para-
meters. One typical example of such parameters is the number of
clusters, which is required as input by many clustering algorithms,
e.g., k-means and NCuts. Some other algorithms, e.g., DBSCAN and
affinity propagation, are able to determine the number of clusters
by themselves. However, they require other parameters as input.
In fact, DBSCAN needs to be given a neighborhood radius and the
minimum number of data in this neighborhood, and affinity pro-
pagation requires the preference values of all data to be specified.
While the density peak based algorithm proposed in [5] generates
impressive clustering results on some datasets, its clustering per-
formance depends on the cutoff distance and some other para-
meters evidently.

Some methods have been proposed to determine the above-
mentioned parameters. For example, the authors of [14–17] pre-
sent some methods to determine the appropriate number of
clusters, and the authors of [4] published a method to calculate the
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range of preference values of data. In addition, correlation clus-
tering [18,19] has been proposed to be a parameter-independent
clustering algorithm. However, the automatic determination of
parameters in clustering algorithms is still an open problem in
general. In existing works these parameters are often determined
empirically.

Noticing that it is usually not a trivial task to determine the
appropriate parameters for existing clustering algorithms, in this
paper we aim to explore a parameter-independent clustering
approach. Our work is partly based on the study of the dominant
sets (DSets) clustering [20,21] algorithm. As a graph-theoretic
concept of a cluster, a dominant set is defined as a subset of data
with high internal similarity and low external one. This definition
enables a dominant set to be regarded as a cluster. DSets clustering
accomplishes the clustering process by extracting dominant sets
sequentially and determines the number of clusters automatically.
Since its proposal, DSets clustering has been successfully applied
in various applications, including soft clustering [22], image seg-
mentation [21], human activity analysis [23], bioinformatics [24],
object detection [25] and image classification [26], etc.

However, we have found that the original DSets clustering
algorithm is sensitive to the similarity measures used in building
the similarity matrix as input. Usually when the data to be clus-
tered are represented as points in a vector space, we need to build
the similarity matrix with each entry in the form of
sði; jÞ ¼ expð�dði; jÞ=σÞ, where dði; jÞ is the distance between two
data i and j, and σ is a regulation parameter. From this similarity
representation we see that given a set of data to be clustered,
different σ results in different similarity matrices, and this in turn
leads DSets clustering to generate different clustering results. This
sensitiveness to similarity measures means that we need an
appropriate σ to generate satisfactory clustering results. In other
words, although DSets clustering does not explicitly involve any
parameter, it is also parameter dependent implicitly. Although it is
possible to build non-parametric similarity, e.g., cosine or histo-
gram intersection, it is shown in [27] that these measures are
much inferior to distance based measures in DSets clustering
potentially. Therefore in this paper we build the similarity matrix
based on sði; jÞ ¼ expð�dði; jÞ=σÞ.

In order to make the DSets clustering results independent of
the parameter σ, we investigate the differences in similarity
matrices generated from different σ's. By regarding a similarity
matrix as an intensity image, we found that similarity matrices
corresponding to different σ's can be regarded as images with
different intensity contrasts. In image enhancement, images of
different intensity contrasts can be transformed to be of approxi-
mately the same contrasts and appearances. This observation
indicates that if we transform the similarity matrices from differ-
ent σ's with some image enhancement technique, it is possible to
remove the differences in these similarity matrices, and then
remove the differences in clustering results. In implementation we
adopt histogram equalization to accomplish the transformation,
and show that this transformation can be used to make similarity
matrices invariant to σ's. However, we also find that this trans-
formation results in over-segmentation in clustering results.
Therefore in the next step we do cluster extension to overcome the
effect of over-segmentation. Experiments on both data clustering
and image segmentation validate the effectiveness of the
enhanced DSets clustering algorithm. A preliminary version of
some works in this paper appeared in [28].

The remainder of this paper is organized as follows. In Section 2
we introduce the definition of dominant set and discuss its
properties and problems. Section 3 details our approach to trans-
form similarity matrices by histogram equalization, and then
Section 4 presents a cluster extension method to solve the over-
segmentation problem. The data clustering and image

segmentation results with our algorithm and some others are
reported in Section 5. Finally, Section 6 concludes this paper.

2. Dominant sets clustering

Traditional clustering algorithms usually accomplish the clus-
tering process by partitioning the given set of data, and each part
is regarded as a cluster. In other words, the clusters are obtained as
the outcome of a partitioning process simultaneously. In contrast,
with the DSets clustering algorithm the clusters are extracted from
the input data in a sequential manner. In this part we introduce
the definition of dominant set and the DSets clustering algorithm
briefly, and refer the interested reader to [20,21,29] for more
details.

Firstly, the n data items to be clustered are represented as an
undirected, edge-weighted graph G¼ ðV ; E;wÞ without self-loops.
Here V denotes the set of nodes and corresponds to the n data
items, E reflects the pairwise adjacency relationship among data
items, and w is the weight function measuring the similarity
between data. We then represent the graph G by its corresponding
pairwise n� n similarity matrix A¼ ðaijÞ, where aij ¼wði; jÞ if ði; jÞ
AE and ai;j ¼ 0 otherwise. As no self-loops exist in the graph, all
entries on the main diagonal of A are zero.

Informally, a dominant set can be viewed as a maximal subset
with internal coherency. More specifically, a dominant set is such a
subset of data that the inside data are similar to each other, and
they are dissimilar to the outside data. This property satisfies the
basic similarity constraint imposed on a cluster, and enables us to
regard a dominant set as a cluster. By extracting dominant sets
sequentially, we are able to accomplish the clustering where each
cluster corresponds to a dominant set.

In the following we present the formal definition of dominant
set. With a non-empty subset DDV , iAD and j=2D, we define

awDðiÞ ¼
1
jDj

X
kAD

aik: ð1Þ

where jDj denotes the size of D

ϕDði; jÞ ¼ aij�awDðiÞ: ð2Þ
The weight of data i with respect to D is then defined as

wDðiÞ ¼
1; if jDj ¼ 1;P

jAD⧹figϕD⧹figðj; iÞwD⧹figðjÞ; otherwise:

(
ð3Þ

Since wD(i) is defined in a recursive form and its meaning is not
evident, we explain what it represents approximately as follows.
From Eq. (2) we see that the parameter ϕDði; jÞ reflects the com-
parison of two similarities, i.e., the similarity between j and i, and
the average similarity between i and all the data in D. Evidently
ϕDði; jÞ40 means that i is more closely related with j than with its
neighbors in D. Although wD(i) is defined in a recursive form in Eq.
(3), we note that it is calculated totally based on ϕD⧹figðj; iÞ, and
here j refers to every data in D⧹fig. In other words, we need to
calculate the two similarities aji and awD⧹figðjÞ for each j in D⧹fig.
Since Eq. (3) shows that wD(i) is calculated in the form of a
weighted sum of these ϕD⧹figðj; iÞ, we can approximately regard
wD(i) as a comparison of the sums of the two similarities, i.e.,

~δði;D⧹figÞ ¼
X

jAD⧹fig
aji ð4Þ

and

~δðD⧹ i
� �Þ ¼ X

jAD⧹fig
awD⧹figðjÞ ¼

1
jD⧹figj

X
jAD⧹fig

X
kAD⧹fig

ajk ð5Þ

If we denote D⧹fig by S, and divide Eqs. (4) and (5) by j Sj , we
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