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a b s t r a c t

In this paper, a dynamic niching clustering algorithm based on individual-connectedness (DNIC) is
proposed for unsupervised classification with no prior knowledge. It aims to automatically evolve the
optimal number of clusters as well as the cluster centers of the data set based on the proposed adaptive
compact k-distance neighborhood algorithm. More specifically, with the adaptive selection of the
number of the nearest neighbor and the individual-connectedness algorithm, DNIC often achieves sev-
eral sets of connecting individuals and each set composes an independent niche. In practice, each set of
connecting individuals corresponds to a homogeneous cluster and this ensures the separability of an
arbitrary data set theoretically. An application of the DNIC clustering algorithm in color image seg-
mentation is also provided. Experimental results demonstrate that the DNIC clustering algorithm has
high performance and flexibility.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering analysis is a common technique for statistical mul-
tivariate analysis and has been used in a wide variety of en-
gineering and scientific disciplines. In the past decades, a large
family of clustering methods were proposed to partition data
points into clusters such that the data points within the same
group are similar to each other, while the data points in different
groups are dissimilar [1–3]. Generally, these algorithms can be
broadly divided into several classes: hierarchical [4], partitional
[5,6], model-based [8] and density-based [7–9]. Among them,
partitional methods attempt to directly decompose the data set
into several disjointed clusters based on some criteria (i.e. validity
functions). The most common criterion adopted by partitional
methods is minimizing some measure of dissimilarity in the
samples within each cluster and maximizing the dissimilarity of
different clusters. However, the clustering algorithms based on
some criteria become computationally expensive when the dis-
tribution of the data to be clustered is sophisticated.

Since the global optimum of the validity function would cor-
respond to the most “valid” solution with respect to the functions,

stochastic clustering algorithms based on evolutionary algorithms
(EAs) have been reported to be able to optimize the validity
functions to determine the number of clusters and partitioning of
the data set simultaneously. In recent years, several clustering
algorithms based on simple EA or its variants have been developed
[10–24]. In fact, the original and many existing forms of EAs are
usually designed for locating a single global solution as they ty-
pically converge to one final solution because of the global selec-
tion scheme used. So, the chromosome of these evolutionary
clustering algorithms is described by a sequence of the cluster
centers. When every cluster center is contained in the chromo-
some, then the fitness function reaches its global optimum.
However, the clustering problem are “multimodal” by nature, that
is, multiple clusters exist. Therefore, it might be desirable to locate
all clusters that are considered as being satisfactory.

Numerous techniques have been developed in the past for lo-
cating multiple optima. These techniques are commonly referred
to as “niching” methods. A niching method can be incorporated
into a standard EA to promote and maintain formation of multiple
stable subpopulations within a single population, with an aim to
locate multiple optimal or suboptimal solutions. The basic idea of
the niching methods is inspired by nature. In nature, an ecosystem
is typically composed of different physical niches that exhibit
different features and allow both the formation and the main-
tenance of different types of life (species). It is assumed that a
species is made up of individuals with similar biological features
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capable of interbreeding among themselves, but unable to breed
with individuals of other species [25]. By analogy, in artificial
systems, a niche corresponds to a local optimum of the fitness
function, and the individuals in one niche exhibit similar feature in
terms of a given metric.

Many niching methods have been proposed in the EA literature
[26–32]. Some representative examples include crowding [27],
deterministic crowding [28], clearing [29], speciation [30], fitness
sharing [31], implicit fitness sharing [32]. Crowding was initially
designed to preserve population diversity [27]. In this method, an
offspring is compared to a small random sample taken from the
current population, and the most similar individual in the sample
is replaced. Therefore, a parameter crowding factor (CF) is used to
determine the size of the sample. In fact, the crowding was shown
not be very effective at identifying multiple optima [28]. Then
deterministic crowding was developed to improve the basic
crowding method [28]. For replacement, instead of using crowding
factor, deterministic crowding compares the new offspring directly
to their parents, and replaces the parents only if the children have
higher fitness. Another mechanism for maintaining population
diversity is fitness sharing (FS) and implicit fitness sharing, which
are probably the most widely used niching method [31–35]. In the
fitness sharing method, the fitness represents the resource for
which the individuals belonging to the same niche compete [31],
while in the implicit methods [33,34], the sharing effects are
achieved by means of a sample-and-match procedure. Fitness
sharing was inspired by the “sharing” concept observed in nature,
where an individual has only limited resources that must be
shared with other individuals occupying the same niche in the
environment. Moreover, niching methods have also been in-
corporated into the differential evolution [36], evolutionary com-
putation [37], particle swarm optimization [38] to enhance their
ability to handle multimodal optimization problems.

However, most existing niching methods suffer from a serious
problem that their performance is subjected heavily to some
niching parameters which are often difficult to set by a user. In FS,
an appropriate niche radius should be defined which representing
the maximal distance among individuals to be consider similar
and therefore belonging to the same niche. In most circumstance,
it is difficult to give an effective value for the niche radius without
any a priori knowledge. In Ref. [33], a criterion for estimating the
niche radius was proposed when the heights of the peaks and
their distances is known a priori. Since in most of the real appli-
cations there is very little prior knowledge about fitness landscape,
it is difficult to estimate the niche radius. In the implicit fitness
sharing [34], sharing is accomplished by inducing competition for
limited and explicit resources, and there is no specific limitation
on the distance between peaks. This method avoids the difficult of
appropriately choosing the niche radius. So, one of the most im-
portant limitations of FS seems to be removed. In fact, some other
parameters, such as the size of the sample of individuals that
compete, the number of competition cycles and the definition of a
matching procedure, need to be set. To improve this situation,
some adaptive niching methods have been developed [39,40]. In
Ref. [40], the parameters can dynamically adjust according to the
devised population diversity index.

In addition to the difficulty of setting effective values for the
niche radius [41] and the lack of an explicit mechanism for iden-
tifying or providing any information about the location of the
peaks in the fitness landscape [42], the definition of niches used by
FS method is implicit. In order to ensure the subpopulations are
steadily formed and maintained, only the individuals belonging to
the same niche should share the resources of the niche. But for the
FS method [43], each individual shares its fitness with all the in-
dividuals located at a distance smaller than the niche radius, no
matter for the niche to which they belong. Therefore, individuals

belonging to different niches will share their fitness, and this will
make the nonperfect discrimination between niches. In order to
overcome this drawback, several dynamic niching methods were
proposed [42,44]. These methods are based upon a dynamic, ex-
plicit identification of niches discovered at each generation and
the FS mechanism is restricted to individuals belonging to the
same niche. However, the performance of these algorithms is de-
pendent on the niche radius. When wrong value for the niche
radius is selected, the algorithm did not find all the niches
perfectly.

In this paper, a dynamic niching clustering algorithm based on
individual-connectedness (DNIC) is proposed. Within the DNIC
clustering algorithm, an adaptive compact k-distance neighbor-
hood algorithm is developed to preserve the diversity of the po-
pulation. A simpler representation is adopted, whereby each in-
dividual represents a single cluster center. All the niches presented
in the population at each generation are automatically identified.
In order to overcome the dependence of the parameter k (i.e. the
size of the neighborhood), an adaptive selection of the number of
the nearest neighbor is considered. This makes the algorithmwork
properly. After the adaptive selection of the nearest neighbor, an
individual-connectedness algorithm is used to achieve several sets
of connecting individuals and each set composes an independent
niche.

The remainder of this paper is organized as follows. Section 2
provides some definitions necessary for our approach. Section 3
describes the compact k-distance neighborhood algorithm. Then a
detail of our DNIC clustering algorithm is presented in Section 4.
Extensive experimental comparisons on synthetic and real-world
images are demonstrated in Section 5. Finally, the paper is con-
cluded in Section 6.

2. Preliminaries

In this section, some definitions needed in the next section are
given. In Ref. [45], a neighborhood based density factor (NDF) was
proposed which uses the neighborhood relationship among data
points. Here we refine its basic concepts into just four ones:
neighbor-based density factor, local dense point, local sparse point
and local even point. The four key definitions facilitate to design
DNIC clustering algorithm. Let = { … }X x x x, , , n1 2 be a finite subset
of a N-dimensional vector space.

Definition 1. Let x be an arbitrary vector in X. Then the neighbor-
based density factor of x, denoted by ( )NDF x , is evaluated as fol-
lows [45]:

( ) = | − ( )|
| ( )| ( )

NDF
R kNB

kNB
x

x
x 1

where ( )kNB x is the k nearest neighbors set of x and − ( )R kNB x is
the reverse k nearest neighbors set of x. More specifically,

− ( )R kNB x is the set of vectors whose k neighborhood contain x. In
practice, | ( ) |kNB x equals to k, and | − ( )|R kNB x is quite discrepant
for different vectors. As a result, there are three situations for

( )NDF x : larger than 1, equal to 1 and less than 1 [45].

Definition 2. Point x is a local dense point if its ( ) ≥NDF x 1.

This means that x is surrounded by many points (i.e. points in
its reverse k-neighborhood). In fact, these data points look more
like the centroids of the data set.

Definition 3. Point x is a local sparse point if its ( )⪡NDF x 1.

This means that x almost has no reverse k-neighborhood and
all the points are far from it.
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