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a b s t r a c t

Spectral clustering makes use of spectral-graph structure of an affinity matrix to partition data into
disjoint meaningful groups. It requires robust and appropriate affinity graphs as input in order to form
clusters with desired structures. Constructing such affinity graphs is a nontrivial task due to the ambi-
guity and uncertainty inherent in the raw data. Most existing spectral clustering methods typically adopt
Gaussian kernel as the similarity measure, and employ all available features to construct affinity matrices
with the Euclidean distance, which is often not an accurate representation of the underlying data
structures, especially when the number of features is large. In this paper, we propose a novel un-
supervised approach, named Axiomatic Fuzzy Set-based Spectral Clustering (AFSSC), to generate more
robust affinity graphs via identifying and exploiting discriminative features for improving spectral
clustering. Specifically, our model is capable of capturing and combining subtle similarity information
distributed over discriminative feature subspaces to more accurately reveal the latent data distribution
and thereby lead to improved data clustering. We demonstrate the efficacy of the proposed approach on
different kinds of data. The results have shown the superiority of the proposed approach compared to
other state-of-the-art methods.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Unsupervised data analysis using clustering algorithms pro-
vides a useful tool to explore data structures. Clustering methods
[1,2] have been studied in many contexts and disciplines such as
data mining, document retrieval, image segmentation and pattern
classification. The aim of clustering is to group pattern on the basis
of similarity (or dissimilarity) criteria where groups (or clusters)
are sets of similar patterns. Traditional clustering approaches, such
as the k-means and Gaussian mixture models, which are based on
estimating explicit models of the data, provide high quality results
when the data is distributed according to the assumed models.
However, when data appears in more complex or unknown
manners, these methods tend to fail. An alternative clustering
approach that was shown to handle such structured data is
spectral clustering. It does not require estimating an explicit model
of data distribution, rather a spectral analysis of the pairwise si-
milarities needs to be conducted.

Spectral clustering normally contains two steps: constructing
an affinity graph based on appropriate metric and establishing an
appropriate way to “cut” the graph. Plenty of approaches exist to
address the graph cut problem, such as minimal cut [3], ratio cut

[4] and normalized cut [5], etc. For constructing affinity graph,
there are mainly three popular approaches: (1) The ε-neighborhood
graph: This kind of graph is constructed by connecting all points
whose pairwise distances are smaller than a pre-set constant ε. (2)
The k-nearest neighbor graph: Here the goal is to connect vertex vi
and vj if vj is among the k-nearest neighbors of vi. (3) The fully
connected graph: Here all vertices are connected and the edges are
weighted by the positive similarities between each pair of vertices.
According to Luxburg in [6], all three types of affinity graphs
mentioned above are regularly used in spectral clustering, and
there is no theoretical analysis on how the choice of the affinity
graph would influence the performance of spectral clustering.

The crucial problem of constructing the fully connected graph is
to define the pairwise similarity. The notion of data similarity is
often intimately tied to a specific metric function, typically the ℓ2-
norm (e.g. the Euclidean metric) measured with respect to the
whole feature space. However, defining the pairwise similarity for
effective spectral clustering is fundamentally a challenging problem
[7] given complex data that are often of high dimension and het-
erogeneous, when no prior knowledge or supervision is available.
Trusting all available features blindly for measuring pairwise simi-
larities and constructing data graphs is susceptible to unreliable or
noisy features [8], particularly so for real-world visual data, e.g.
images and videos, where signals can be intrinsically inaccurate and
unstable owing to uncontrollable sources of variations and changes
in illumination, context, occlusion and background clutters etc. [9].
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Moreover, confining the notion of similarity to the ℓ2-norm metric
implicitly imposes unrealistic assumption on complex data struc-
tures that do not necessarily possess the Euclidean behavior [8].

In this paper, our aim is to deduce robust pairwise similarity so
as to construct more meaningful affinity graph, yielding perfor-
mance improvement of spectral clustering. To achieve this goal, we
first formulate a unified and generalized data distance inference
framework based on AFS fuzzy theory [10] with two innovations:
(1) Instead of using the complete feature space as a whole, the
proposed model is designed to avoid indistinctive features using
fuzzy membership function, yielding similarity graphs that can
better express the underlying semantic structure in data; this will
significantly reduce the number of features used in the clustering
process. (2) The Euclidean assumption for data similarity inference
is relaxed using fuzzy logic operations defined in AFS. The data
distance is then put into the Gaussian kernel to enforce locality. It
is worth mentioning that the distinctive features used to represent
samples may be different from one another, e.g., every sample
could have its own feature subspace. Accordingly the distance
measured is dependent on the pairwise feature subspace. A similar
idea was presented in [11], which states that different similarities
can be induced from a given sample pair if distinct propositions
are taken or different questions are asked about data commonal-
ities. In our proposed model, the assumption is that there is no
optimal feature subspace which works well for all samples. Each
sample pair has its own best feature subspace in terms of distance
measure. In terms of AFS clustering, we propose a new method to
solve the similarity matrix instead of using the Transitive closure,
which needs additional evaluation criteria to obtain clustering
result. Extensive experiments have demonstrated that the pro-
posed method is superior compared to both the original spectral
clustering and the AFS clustering when the number of features is
large.

The rest of this paper is organized as follows. Section 2 pre-
sented some previous work on spectral clustering. The main ideas
of AFS theory are described in Section 3. In Section 4 we propose a
novel approach for generating robust affinity graphs. Experimental
results on UCI datasets, USPS handwritten digits and face images
are presented in Section 5 and we conclude our work in Section 6.

2. Related work

Large amount of work has been conducted on spectral clus-
tering [5,12–16]. Generally, existing approaches for improving
spectral clustering performance can be classified into two para-
digms: (1) How to improve data grouping while the affinity graph
is fixed [5,12,15]. For example, Xiang and Gong [15] proposed to
identify informative and relevant eigenvectors of a data affinity
matrix. (2) How to construct appropriate affinity graphs so as to
improve the clustering results with standard spectral clustering
algorithms [13,17–21]. For example, Chang and Yeung [20] pro-
posed to use path-based similarity to construct robust affinity
graph. In this paper, we concentrate on the second paradigm.

Many approaches have been proposed for improving the ro-
bustness of affinity graphs adapting to the local data structures
[5,17,22]. Particular attention has been focused on learning an
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where si is the distance between point xi and its k-th nearest
neighbor. Yang [23] proposed a similar local scaling factor, which is
the mean distance of the k nearest neighbors rather than just
considering the k-th neighbor. These methods, however, are still
susceptible to the presence of noisy and irrelevant features [8].

To deal with this issue, Pavan and Pelillo [18] proposed a graph-
theoretic algorithm for forming tight neighborhoods by selecting
the maximal cliques (or maximizing average pairwise affinity),
with the hope of constructing graphs with fewer false affinity
edges between samples. A kNN based graph generation method
was proposed in [19] where the consensus information from
multiple kNN is used for discarding noisy edges and identifying
strong local neighborhoods. More recently, a random forest based
approach was proposed in [8]. This method exploits similarity
information from tree hierarchy, leading to a non-linear way of
affinity construction. Meanwhile with the random forest frame-
work, the model is capable of removing noisy features. The same
idea is proposed in different ways in our approach. Instead of
blindly trusting all available variables, our proposed graph in-
ference method exploits discriminative features for measuring
more appropriate data pairwise similarities. The affinity matrix
created is thus more robust against noisy real-world data.

AFS theory based clustering has been attempted in [24–26].
Instead of using the popular Euclidean metric, AFS clustering ap-
proaches capture the underlying data structure through fuzzy
membership function, and the distances between samples are
represented by membership degree. Furthermore, by extracting
the description of samples, those methods are able to establish
discriminative feature subspaces for distance measure, which
provides a way to deal with commonly existed noise in real-world
data. However, in the original AFS clustering, the similarity matrix

= ( ) ×S sij N N does not necessarily satisfy the fuzzy transitive condi-
tion ≥ ∨ ( ∧ )s s sij k ik jk , where ∨ and ∧ stand for max and min, re-
spectively. Usually an object is considered similar to another if and
only if the degree of similarity between them is greater than or
equal to a predefined threshold α. Therefore, the transitive con-
dition states that, for any three objects i, j and k, if object i is si-
milar to object k α( ≥ )sik and object k is similar to object j α( ≥ )skj ,
object i is similar to object j α( ≥ )sij as well. Since the transitive
condition is indispensable for clustering, the matrix can always be
transformed into its Transitive Closure (denoted by

( ) = ( ) ×TC S tij N N). TC(S) is defined as a minimal symmetric and
transitive matrix. Usually, TC(S) is obtained by searching for an
integer k such that ( ) =S Sk k2 . With a given α, objects can now be
partitioned into different clusters. The problem here is, each
threshold α leads to a particular clustering result therefore an
evaluation criteria is necessary to obtain a crisp result. It is non-
trivial to build such criteria especially in fuzzy clustering. Fur-
thermore, the similarity matrix may not be reflexive (e.g. =s 1ii

does not always hold), which means some samples cannot be
clustered with certain α (when α<sii ). Therefore, a re-clustering
process is needed for the original AFS clustering [26] (e.g., to pick
up samples which are not clustered in the previous clustering
process). The above processes are nontrivial and time-consuming.

3. AFS theory

The proposed affinity matrix construction approach is built
based on the AFS theory. AFS theory was originally proposed in
[10] and then extensively developed in [27,24,28], etc. AFS fuzzy
sets determined by membership functions and their logic opera-
tions are algorithmically determined according to distributions of
the original data and the semantics of the fuzzy sets. The AFS
framework enables the membership functions and fuzzy logic
operations to be created based on information within a database,
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