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a b s t r a c t

In this paper, we present a framework to construct a general class of recurrent neural networks (RNNs) as
associative memories (AMs) for pattern storage and retrieval. Different from the traditional AM models
that treat elements of a pattern equally, the proposed framework introduces visual saliency of a target
pattern into the AM design process by encoding saliency values into the ellipsoidal basis function (EBF)
kernel that calculates the weighted distance between the input and target patterns. Network potential
fields (NPFs) are then constructed as the linear combination of EBF/radial basis function (RBF) kernels for
auto-associative memories (AAMs) and hetero-associative memories (HAMs), respectively. Sparse and
dynamic synapses for both the proposed AAMs and HAMs are determined according to the gradients of
the NPFs with high efficiency and without the continuity assumptions of the RNN's activation function,
which is usually required by traditional AMs. With the proposed method, the target patterns are assigned
as fixed point attractors of the network and the AMs are proven to be able to converge to one of these
attractors via Lyapunov analysis. The resulted AAMs and HAMs are demonstrated to have excellent
tolerance and robustness to a variety of input noises and corruption via comparative experiments on
retrieval and association of 2D color images.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Associative memories (AMs) are biologically inspired models
that are able to correctly store, recall and associate patterns even
when the input patterns are noised, corrupted or incomplete [1,2],
which have been applied in recognition [3,4] and classification
[5,6]. Through an AM, a mapping is established between the input
pattern x and the desired output pattern y, which is considered to
be an auto-associative memory (AAM) if x¼y or a hetero-asso-
ciative memory (HAM), otherwise.

In 1982, Hopfield showed that a class of RNN (Hopfield net-
work) can be designed to behave as AMs. Generally, a Hopfield

network are determined according to the Hebbian rule that en-
codes the correlation between elements of a memorized pattern
into the network's synaptic weights between different neurons.
However, the storage capacity of the Hopfield network is known to
be very limited [7] and problems of stability exist. To overcome
these problems, extensive works have been done by generalizing
the original Hopfield network and Hebbian rule [8–10]. Apart from
the classical Hopfield network, other types of RNNs were also
designed as AMs [11–15]. Most of these works focused on AMs of
small binary patterns. Thus, the efficacy and efficiency of these
AMs may degrade while handling large and complex patterns such
as images, especially when the input patterns are noised and
corrupted.

To realize robust images storage and retrieval, AMs for images
retrieval has been a hot research topic in recent decades. De-
coupled-Voting Hamming Associative Memory Networks was
proposed in [16] for binary image. In [17], the design methodology
for a class of RNN with linear threshold (LT) neurons was derived
based on Hebbian rule and AAM of gray-scale image was im-
plemented. However, perfect recall was not achieved with noised
input. Several different RNN models were adopted in [18–20] for
storage and retrieval of gray-scale image, exhibiting ability of
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handling random noises in the input pattern. In [21], an RGB color
image was decomposed into three separate gray-scale images and
stored in three independent AAMs, which were realized using a
class of Cohen–Grossberg networks. Instead of using RNN models,
dendritic lattice associative memories [22] were developed for
gray scale image, which showed a certain degree of noise tolerance
to the input patterns. A Class of Sparsely Connected multi-valued
morphological associative memories (MAM) was proposed in [23]
for auto-association of large color images and recovering part of
the noised or incomplete input. In [24], Hetero-associative mor-
phological memories was developed based on four-dimensional
storage. Variants of MAMs were proposed in [25,26] by using the
mid operator, which have dynamic synapses. A Subspace Projection
Associative Memories (SPAM) was proposed in [27], which updates
the network's synaptic weights iteratively during pattern retrieval
process. Quantale-based associative memory (QAM) was introduced
in [28] to improve the noise tolerance for color image retrieval on
CIELab color space. Besides MAMs, fuzzy associative memories
(FAMs) [29,30] were also developed based on fuzzy neural network
where input patterns, output patterns, and/or connection weights
of FAMs are all fuzzy-valued. The applicability of FAM on image
storage and retrieval were demonstrated in [31–33].

Despite that computational models of AMs are motivated by
the biological mechanism in human brains, little attention is paid
to the fact that human's internal representation of the complex
visual is actually very sparse [34]. In other words, although hu-
mans are able to perceive the visual world with rich details, only a
minute fraction of the perceived scene is stored in the visual
memory because its storage capacity is quite limited [35]. How-
ever, the sparsity in visual scene representation also enables hu-
mans to robustly store and recall visual memory from an input
that might be noised, transformed or corrupted. In [8], the role of
saliency weights in memory dynamics has been investigated for a
class of attractor network, which shows that the saliency weights
can affect the landscape of the attractors. However, only simple
correlated patterns rather than images are studied and more im-
portantly, the saliency weights for each pattern are assigned
without consideration of the pattern's characteristics, making it
less suitable to emulate the biological observations discussed
above. To address this problem, this paper proposes to utilize
techniques of visual saliency computation [36–38] to compute a
saliency map of an image pattern and encode them into our
memory storage and retrieval process. The more salient a region is,
the more important role it plays when recalling the stored pattern.
Such saliency-driven AMs are realized on a class of general con-
tinuous-time RNN model, which differs from the previous works
that require the neuron activation function to be differentiable and
Lipchitz continuous as in [18,21] or discontinuous as in [17,13].
Instead, it has no requirement on the continuity of neuron acti-
vation function. Specifically, for auto-association, the obtained
saliency maps of every patterns to be stored are encoded in
the ellipsoidal basis function (EBF) kernels that compute the
weighted distance between the input and the stored patterns. For
hetero-association, radial basis function (RBF) kernels are used
instead. Then, the network potential field (NPF) is constructed as a
linear combination of these EBF/RBF kernels. To improve compu-
tational efficiency, connections between neurons are restricted to
be sparse as only self-feedback of neurons exist. Synaptic weights
for these self-connections are determined according to Lyapunov
analysis, which guarantees the asymptotic stability of the resulted
RNN. Unlike Hopfield network, where the synapses are fully
connected and not adjusted after training phase, the synapses
computed by NPF are sparse and dynamic, which yield a desirable
computational complexity linear to the pattern dimension and
are more biologically plausible [39]. To testify the efficacy of
the proposed framework, both saliency-driven AAM (SD-AAM)

and SD-AAM-HAM (a HAM that is concatenated after a SD-AAM)
are implemented to process color image patterns with a variety
of noises or corruption. Experiment results demonstrate that
the proposed AMs have excellent noise tolerance and are able
to rectify corruptions of input patterns. With the above discus-
sions, the major contributions of this paper are highlighted as
follows:

� A new design framework of AMs based on a general class of
RNNs is proposed by constructing the NPF with the stored
patterns that are explicitly assigned as its local minima. Weights
of the sparse dynamic synapses are determined with low
computational complexity.

� With the proposed framework, visual saliency is introduced to
AMs by shaping the EBF kernels during memory storage and
retrieval, which can be considered as a biologically motivated
automatic feature extraction process.

� The AMs with the designed sparse and dynamic synapses are
guaranteed to be asymptotically stable according to Lyapunov
analysis and demonstrated to have excellent tolerance of noise
and corruption in input patterns.

The rest of the paper is organized as follows. The network
model is presented in Section 2. In Section 3, NPFs are constructed
for AAM and HAM, respectively. In Section 4, sparse and dynamic
synapses are determined according to NPFs and Lyapunov analysis.
Section 5 shows experiments and quantitative analysis on retrieval
and hetero-association of color images. Further discussion on
the proposed framework and some final remarks are given in
Section 6.

2. Network model

Consider the following general RNN model

∑̇ ( ) = ( ) + ( ) +
( )=

x t f x w g x h
1

i i i
j

n

ij j j i
1

where ∈ xi is the state variable of the i-th neuron, fi(x) is a
bounded gain function, gi(x) is an activation function, hi is a con-
stant value and wij is the synaptic weight. Models in [17,18,21] can
also be described by Eq. (1). The activation functions in [17] are
explicitly defined as a discontinuous linear threshold (LT) function
σ ( ) = ( )x x vmax ,i th , where vth is a threshold constant. On the other
hand, in [18,21], the activation functions are required to be dif-
ferentiable and Lipshitz continuous. The model presented here is
more general in the sense of less restriction on the activation
function as gi is only required to be nonzero, i.e.,

( ) ≠ ∀ ( )g x x0, 2i

To endow the RNN with the abilities of pattern storage and re-
trieval, the RNN (1) needs to be properly designed. For simplicity,

( ) ( )f x g x,i i and hi are considered to be known functions/value.
Thus, it is required to appropriately design the synaptic weights wij

such that the given P patterns ξ ξ…, , P1 can be assigned as the
attractors of the resulted network. As an AM, the network should
be able to converge to one of these attractors if the initial state
(i.e., input to the network) is sufficiently close. For a color image
pattern x composed of n pixels, it can be described by information
from C individual channels … ∈( ) ( ) x x, , C

n
1 . Then, they are con-

catenated as = [ … ] ∈( ) ( ) x x x, , C
Cn

1
T T T , which is the neural state of

the RNN. The resulted network model in Eq. (1) can be rewritten in
matrix form as follows:

̇ ( ) = ( ) + ( ) + ( )x t F x WG x H 3
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