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a b s t r a c t

We deal with the multiple output regression task where the central theme is to capture the sparse output
correlation among the output variables. Sparse inverse covariance learning of linear Gaussian conditional
models has been recently studied, shown to achieve superb prediction performance. However, it can fail
when the underlying true input–output process is non-Gaussian and/or non-linear. We introduce a novel
sparse conditional copula model to represent the joint density of the output variables. By incorporating a
Gaussian copula function, yet modeling univariate marginal densities by (non-Gaussian) mixtures of
experts, we achieve high flexibility in representation that admits non-linear and non-Gaussian densities.
We then propose a sparse learning method for this copula-based model that effectively imposes sparsity
in the conditional dependency among output variables. The learning optimization is efficient as it can be
decomposed into gradient-descent marginal density estimation and the sparse inverse covariance
learning for the copula function. Improved performance of the proposed approach is demonstrated on
several interesting image/vision tasks with high dimensions.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the multiple output (or vector output) regression
problem where the goal is to predict multiple response variables
from input covariates. Contrary to the conventional single (scalar)
output regression in statistics and machine learning fields, the
central aspect is to capture the statistical correlation among the
output variables efficiently. In this sense, the simple strategy of
applying single output regression estimation independently for each
of the output variables is considered to be suboptimal since it
completely ignores the output correlation in learning a predictive
model. In the machine learning literature, there has been consider-
able recent research work on estimating more accurate multiple
output regressors beyond the independent treatment [1–3].

In the practitioner's point of view, effective output correlation
modeling in regression is highly beneficial for several application
problem. For instance, for the task of denoising hand-written
character images, the output vector comprises of pixel intensities
of a character image, in which neighboring dimensions tend to
have similar values (as either foreground character pixels or
background), clearly exhibiting strong conditional dependency
patterns among the output variables. Also in computer vision, in
the motion estimation problem predicting motions for next few
frames, an instance of typical forecasting problems, as the image
features at two consecutive frames typically conform to the

motion smoothness constraint, the data contain high statistical
correlation among the output variables.

However, for situations where the input/output data are high
dimensional, one has to trade off the faithful output correlation
modeling against model complexity. One sensible approach is to
confine the model parameter space with sparseness constraints,
which motivates the recently emerging sparse inverse covariance
estimation [4–9]. Under the Gaussian random field models (either
joint or conditional densities), these approaches attempt to
impose the sparseness of the inverse covariance matrix based on
the following fact: a Gaussian density factorizes into pairwise
potentials on output variables (say, yi and yj), with the corre-
sponding coefficient equal (up to constant) to the (i,j) component
of the inverse covariance matrix. Therefore, having many zero
entries in the inverse covariance leads to a loose statistical
dependency structure.

While the sparse inverse covariance estimation has achieved
superb prediction performance, the main weak point is that most
approaches are built on the strong assumption of linear Gaus-
sianity of output given input. Although the assumption leads to
convex optimization, the linear Gaussian model family is less
flexible and considerably restricted in representational capacity. In
the sequel, when the true data generating process is far from
linear Gaussian, it may suffer from inaccurate prediction.

In this paper, we propose a novel sparse copula-based density
model that admits much richer non-Gaussian and non-linear
density models. The copula model is studied considerably in
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statistics community [10–15], while its application to machine
learning is relatively rare. A main difficulty in multivariate density
modeling is to choose a proper function family beyond the mul-
tivariate Gaussian, and the copula alleviates it by decoupling the
task into two subtasks: (i) build marginal distributions for indivi-
dual variables which is easy due to univariate modeling, and (ii)
model the inter-correlation among the variables by the so-called
copula function. The copula function can be any function that only
satisfies certain uniform marginal constraints.

One may argue that defining the copula function is as difficult
as choosing a multivariate density. However, the most popular
strategy is to adopt the Gaussian copula function. It is known that
as far as the marginal densities are not linear Gaussians, the
resulting density is non-Gaussian. Moreover, by choosing sensible
(non-Gaussian) marginal densities, the model can be endowed
with high representational power beyond Gaussian, hence pro-
viding a great deal of flexibility in modeling a non-linear and non-
Gaussian multivariate distribution.

Indeed the proposed model employs, as the univariate mar-
ginal densities, the mixture of sigmoid-weighted Gaussians. Also
known as the mixture of experts [16,17], it divides the input space
into different regimes, each delineated by multiple hyperplanes,
and in each regime, the output variable conforms to a mixture of
Gaussians, a rich density family that can approximate any density
with high precision.

In addition to the enriched representational capacity with
flexible density modeling, the intriguing property of the proposed
model is that the conditional independence among the output
variables can be directly imposed by a sparse inverse covariance in
the copula function. Imposing sparseness of the inverse covariance
in the copula function in learning a density model is the central
idea in our approach, which is beneficial for capturing the most
salient correlation in the output variables for high-dimensional
data scenarios. Moreover we derive that the sparse inverse copula
covariance learning with parameters of marginal densities fixed,
becomes an instance of convex optimization.1

Furthermore, the learning problem can be framed exactly into
the existing sparse inverse covariance learning for linear Gaussian
models by replacing the empirical second-order moments with
the statistics based on the marginal copula-linked features. In the
computational perspective, we can benefit from the existing fast-
convergent sparse inverse covariance learning algorithms (e.g.,
[9]) without any modification. In a nutshell, our copula-based
sparse density model is endowed with rich representational
power, and at the same time, avoids overfitting by loose statistical
dependency modeling through sparse inverse covariance in the
copula function. This promising aspect is indeed demonstrated on
several interesting real-world multiple output regression tasks.

The paper is organized as follows: after describing the formal
problem setup and notation in Section 1.1, we briefly discuss some
recent related work on sparse inverse covariance learning for
Gaussian models in Section 2. Then in Section 3, our conditional
copula model is introduced, for which we propose the sparse
learning algorithm based on block coordinate descent. In Section 4
the experimental results on several regression tasks, contrasting
the proposed model against existing approaches are provided.

1.1. Notations and problem setup

The multiple output regression is considered where the main
goal is to predict the response vector yARp from the input feature
vector (or the covariates) xARd. One straightforward approach can
be applying standard scalar-output regression, estimating a
regression model for each output dimension independently.
However, it can lead to a suboptimal solution in that the under-
lying inter-correlation among the output (random) variables is
ignored. Properly capturing the statistical dependency of the
response variables is the key to yield better prediction models. We
are particularly interested in situations where the input/output
dimensions (d and p) are relatively large compared to the training
sample size. This implies that one can have potentially overfitted
models unless certain regularization or constraints are properly
imposed on the model space.

For notations, we use boldfaced symbols for vectors and
matrices, and plain letters for scalar values. Also, yi, for i¼ 1;…; p,
indicates the i-th entry of y, while yC for a set CDf1;…; pg stands
for the set of variables in y whose indices belong to C. We denote
by N ðz;m;VÞ the multivariate Gaussian density with mean m and
covariance V. For a matrix A, Ai;j indicates the (i,j)-entry of A. The
determinant and trace of a positive definite matrix Σ (i.e., Σg0)
are denoted by detðΣÞ and TrðΣÞ, respectively.

2. Related work on sparse inverse covariance learning

In this section we briefly review some related work on sparse
inverse covariance learning for Gaussian random field models and
related models. Beginning with general sparse Gaussian density
estimation (Section 2.1), we describe its extension to conditional
linear Gaussian models for multiple output prediction tasks (Sec-
tion 2.2).

2.1. Sparse inverse covariance density estimation

For the task of k-variate Gaussian density estimation
PðzÞ ¼N ðz;0;VÞ, zARk, with given data fzigni ¼ 1 and the zero-mean
data assumption without loss of generality, the standard
maximum-likelihood estimate (MLE) admits the closed form
solution, V¼S where S is the sample covariance matrix:

S¼ 1
n

Xn
i ¼ 1

zizi> : ð1Þ

Despite its asymptotic consistency, MLE becomes quickly
unreliable when the data are high-dimensional (k large) and the
number of data samples is limited (n small).

To address the issue, one needs to exploit certain prior
knowledge about the domains of interest, among which imposing
statistical independency among the random variables in z is a
reasonable assumption to be made. In essence, imposing many
entries of the inverse covariance to be 0, has an effect of reducing
the number of parameters to be estimated, which consequently
yields a sensible and reliable model. More importantly, in the
Gaussian model, the sparse correlation directly translates to sparse
inverse covariance.

Formally, letting Ω¼V�1, this can be easily seen from the
density representation,

PðzÞpexp �1
2
z>Ωz

� �
¼ exp �1

2

X
i;j

zizjΩi;j

0
@

1
A; ð2Þ

which can be seen as the undirected graphical model, more spe-
cifically, Gaussian Markov random field (GMRF) [18]. By the
Hammersley–Clifford theorem [19] or the local/global Markov

1 More precisely speaking, as derived in Section 3.3, we have relaxed the
constraints of the diagonal entries of the correlation matrix being all 1. Although
the relaxation may result in improper density in the sequel, however, it is advan-
tageous to make the problem remain convex (when the expert gating parameters
are fixed). In practice, the solution obtained from the relaxed problem gives superb
prediction performance, which justifies the modification of the problem.
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