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a b s t r a c t

The sample mean is one of the most fundamental concepts in statistics. Properties of the sample mean
that are well-defined in Euclidean spaces become unclear in graph spaces. This paper proposes condi-
tions under which the following properties are valid: existence, uniqueness, and consistency of means,
the midpoint property, necessary conditions of optimality, and convergence results of mean algorithms.
The theoretical results address common misconceptions about the graph mean in graph edit distance
spaces, serve as a first step towards a statistical analysis of graph spaces, and result in a theoretically
well-founded mean algorithm that outperformed six other mean algorithms with respect to solution
quality on different graph datasets representing images and molecules.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical inference deduces properties about a population by
analyzing a subset of sampled data. One central path departs from
the fundamental concept of mean, then leads via the normal dis-
tribution and the Central Limit Theorem to statistical estimation
using the maximum likelihood method. The maximum likelihood
method in turn is a fundamental approach that provides prob-
abilistic interpretations to many pattern recognition methods.

This central path is well-defined in Euclidean spaces, but be-
comes unclear in mathematically less structured spaces. Since an
increasing amount of non-Euclidean data is being collected and
analyzed in ways that have not been realized before, statistics is
undergoing an evolution [43]. Examples of this evolution are
contributions to statistical analysis of shapes [3,11,27,42], complex
objects [48,57], and tree-structured data [14,57].

All these spaces have in common that a well-defined pairwise
addition of elements is unknown. The standard approach to gen-
eralize the concept of sample mean to arbitrary distance spaces
( )d, is based on an idea proposed by Fréchet in 1948 [20]. In-
spired by Fréchet, a sample mean of n elements … ∈x x, , n1 is any
element from that minimizes the sample Fréchet function
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=
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Research on the sample mean of graphs started with the pio-
neering work by Jiang et al. [40,41]. By using Fréchet's formulation,

they studied the sample mean under the term generalized median
in graph spaces endowed with the graph edit distance [19,45,55].

In principle, any graph distance can be used to study a sample
mean of graphs. The majority of research inspired by Jiang et al.
[40,41] applied graph distances that can be subsumed as variants
and restrictions of the graph edit distance [19,45]. Research pre-
dominantly focused on devising heuristics for approximating a
sample mean [17,26,31,32,49,51] and on developing central clus-
tering algorithms [4,6,16,24,30,46,47].

In contrast to shape or tree spaces [3,14], there are hardly any
studies that aim at understanding elementary theoretical proper-
ties of the sample mean in graph spaces. This also includes theo-
retical issues related to computing a sample mean, which is re-
levant for applications in statistical pattern recognition, such as in
computer vision, network analysis, chemo- and bioinformatics
[19,21,45].

The theoretical gap in the field of graph-based representation
on the sample mean is prone to misconceptions that hinder sta-
tistical inference and resist bridging the gap between structural
and statistical pattern recognition. We will point to potential fal-
lacies of the sample mean in graph edit distance spaces in the
introductions of Sections 3–5.

In this contribution, we endow graph spaces with a restricted
form of graph edit distance, called graph alignment metric hence-
forth. The graph alignment metric is an intrinsic graph metric that
occurs in different guises as a widely applied dissimilarity function
[7,8,23,56,58]. Then we prove the following properties:

1. Optimization (Section 3):
(O1) Existence of sample mean.
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(O2) Necessary conditions of optimality for Fn.
(O3) Convergence results for algorithms that minimize Fn.

2. Statistics (Section 4):
(s1) Existence of population mean.
(s2) Consistency of sample mean.
(s3) Uniqueness of population and sample mean.

3. Pattern recognition (Section 5):
(p1) Existence of midpoint.
(p2) Coincidence of sample mean and midpoint.

Based on property (O2) we propose a majorize–minimize
mean (MMM) algorithm and establish convergence ( )O3 to
solutions satisfying necessary conditions of optimality. Sec-
tion 6 suggests that the theoretically well-founded MMM-
algorithm is also useful for applications. In experiments the
MMM-algorithm substantially outperformed six other mean
algorithms with respect to solution quality on different graph
datasets representing images and molecules.

The present treatment is intended as first step along the above
mentioned central path of statistical inference in graph spaces. We
enter this path by proving the statistical properties (S1)–(S3). These
properties determine the main purpose of a sample mean as an
estimator of a population mean. In addition, properties (S1)–(S3)
pave the way towards studying the asymptotic behavior of the
sample mean as the next step along the central path. First ex-
amples of properties at the other end of the central path are the
geometric properties (P1) and (P2). Both properties induce mean-
ingful and geometrically interpretable update rules for general-
izing a subset of pattern recognition methods to graph spaces. To
apply these pattern recognition methods, a theoretically sound
way to compute a sample mean is desirable. This issue leads to the
third set of properties (O1)–(O3) related to optimization.

2. Background

This section describes graph alignment spaces as well as the
concepts of sample and population mean. Statements in this sec-
tion are proved in [38].

2.1. Graph alignment spaces

We first introduce attributed graphs and then endow them
with an intrinsic metric, called graph alignment metric. We refer
to Fig. 1 for explanatory illustrations of some of the concepts we
introduce in this section.

Attributed graphs. Let = d be the set of node and edge at-
tributes. An attributed graph is a triple α= ( )X , , , where
represents a finite set of nodes, ⊆ × a set of edges, and
α × →: is an attribute function satisfying

1. α ( ) ≠i j 0, for all edges ( ) ∈i j,
2. α ( ) =i j 0, for all non-edges ( ) ∉i j,

where ∈i j, are distinct nodes. According to the above defini-
tion, graphs have the following properties:

1. Attributes α ( )i i, of nodes ∈i may take any value from .
2. Graphs are complete, because non-edges are edges with zero

attribute 0.
3. The definition comprises directed as well as undirected graphs.

Matrix representations. It is convenient to identify graphs with
sets of matrices. A graph X is completely specified by a matrix
representation = ( )X xij , where the elements ∈xij represent the
node and edges attributes for all ∈i j, .

Fig. 1. The upper left box shows two attributed graphs X and Y, where attributes are weights. White numbers inside the nodes are the node attributes and red numbers
attached to the edges are the edge attributes. Small black numbers next to the nodes are their unique identifiers. These identifiers correspond to the order of nodes according
to the matrix representation given below for each graph. In this example, we assume that all graphs are of bounded order 3. Then all matrix representations have dimension
3�3. The matrix representation of the two-node graph X has a padding zero column and row. The box at the upper right shows the identifiers of the nodes of graph X when
optimally aligned towards graph Y and its matrix representation ′X . The graph alignment metric is defined by δ ( ) = ′ − =X YX Y, 7 . (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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