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a b s t r a c t

Optimal reverse prediction (ORP) has recently been proposed as a semi-supervised framework to unify
supervised and unsupervised training methods such as supervised least square, principal component
analysis (PCA), k-means clustering and normalized graph-cut. ORP has an ability to deal with classifi-
cation tasks in which the labeled data are insufficient. But, the performance of ORP and its kernelized
version is still not satisfactory for classification applications. To further improve performance of ORP,
motivated by recently proposed orthogonal k-means clustering, in this paper we propose an orthogonal
optimal reverse prediction (OORP), together with its kernelized and Laplacian regularized extensions.
With only limited additional computations, our algorithms can greatly enhance the classification per-
formance, compared to the original ORP.

Extensive experiments on synthetic and benchmark data collections consistently prove the effec-
tiveness and efficiency of our OORP in comparison with several competing approaches.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction and brief review of SSL

Semi-supervised learning (SSL) is a popular learning paradigm
when labeled data are scarce. In many machine learning applica-
tions, obtaining data samples is much easier than labeling them.
For example, in the speech recognition research, labeling speech
signal is more complicated than signal collecting. Also, for web
information processing, there are billions of web pages that are
available online. However, it is costly to reliably label them.

When labeled data are insufficient, it is possible to exploit
unlabeled data to facilitate the classification performance [1,2].
Semi-supervised learning algorithms, which incorporate labeled
and unlabeled data simultaneously into models, have recently
been extensively studied and widely used in classification, di-
mensionality reduction [3,4] and clustering.

Probably the earliest idea of adopting the unlabeled data to
improve the classification performance is the self-learning algo-
rithm [1], which is a wrapper-algorithm and has appeared in many
literatures for some times. The procedure of this algorithm can be
generally divided into three steps: First, it repeatedly trains a
classifier model based on labeled data. Second, the algorithm can
predict a part of unlabeled data according to the current classifier
model. Third, the algorithm adds the predicted unlabeled data into

the labeled data set for the next training phase. At that time, the
idea of self-learning was widely used in semi-supervised learning
algorithm. However, the performance of the algorithm strongly
depends upon the classifier's prediction accuracy.

The transductive support vector machine (TSVM) [5,6] is the
mostly used semi-supervised learning algorithm, which seeks the
largest separation between labeled and unlabeled data through
regularization. It has been shown to give good performance on the
text classification job [7]. In our five experiments, TSVM gives a
good classification performance, only inferior to our KOORP
method in four experiments, however, TSVM is a time consuming
method which limits its applications in reality. SVMs combining
other algorithms such as locality preserving projection [8], called
semi-supervised induction, have been proposed for images re-
trieval tasks. Experimental results have shown its efficiency and
effectiveness in [9].

LapSVM and LapRLS [10] are two important regularizer based
semi-supervised learning methods. They exploit the geometry
structure of data to enhance learning by imposing a data-depen-
dent regularization to the learning model. LapSVM and LapRSL are
graph based learning methods, where graph is constructed based
on the labeled and unlabeled data and the instances which con-
nected by heavy edge tend to have the same labels. Graph-based
algorithms have shown their superiority in many classification
tasks [10–12]. However, this approach usually involves the extra
graph computation operations so that resulting those algorithms
are time consuming when dealing with large data set. Many al-
gorithms, such as anchor graph algorithm [13,14] and Nystrom
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approximation [15,16], have been proposed to reduce their com-
putation complexities. Besides the graph based algorithms, kernel
based algorithms have also been proposed in [17] as well as other
regularized semi-supervised learning algorithms such as those in
[18–20].

Recently, Xu et al. have proposed a new SSL model called op-
timal reverse prediction (ORP) [21,22], which adopt the least
square regression-like approach to minimize the least square loss
by optimizing over both the mapping matrix and guessed labels of
the test data. It has been shown that supervised least squares,
unsupervised principal components analysis, k-means clustering
and normalized graph-cut can all be expressed as special cases of
the ORP method. However, their paper only analyzed the re-
lationship between ORP and the traditional methods and has not
presented efficient algorithms to solve it and the performance of
the method is also unsatisfactory.

In [23,24], the concept of orthogonal k-means clustering has
been proposed. In this work, pair-wise orthogonal constraint has
been resorted to the cluster center matrix, which not only can
improve the information retrieval accuracy but also make the k-
means clustering algorithm more scalable. As we know that dis-
crete optimization is the most feasible approach to solve k-means
clustering problem, however, as k-means problem is not sub-
modular, discrete optimization cannot obtain a global optimal
solution. The same problem exists in the ORP problem. In [21], the
algorithm of ORP first relaxes the label matrix to be continuous
matrix and then thresholds it to get the discrete label matrix.
Some algorithms imposed the sparse constraints on the objective
to implement the clustering task and got excellent performance
[25,26]. In the orthogonal k-means the cluster matrix is con-
strained to be columns orthogonal and the matrix can be re-
presented as a product of a rotation matrix and a diagonal scaling
matrix, which makes the optimization procedure much easier.
More details are referred to [24,23].

Inspired by the success of orthogonal k-means, we propose an
orthogonal optimal reverse prediction (OORP) algorithm, then
extend it to the kernelized OORP (KOORP) and Laplacian OORP
(LOORP). Our algorithms can give a better classification accuracy
than the original ORP and kernelized ORP (KORP) algorithms at the
cost of limited additional computations in OORP and KOORP.

To illustrate the superiority of our algorithms, we designed the
classification experiments on a synthetic data and four public data
sets to compare our algorithms' performance with other semi-
supervised learning algorithms including self learningþSVM
(SLSVM) [27], ORP, KORP, TSVM, LapRLS, LapSVM and supervised
learning algorithm SVM. Experimental results show that our pro-
posed OORP and its extensions KOORP and LOORP outperform the
other semi-supervised learning algorithms, SLSVM, LapRLS,
LapSVM and TSVM, respectively. Compared with the supervised
SVM, our KOORP performs better, and it achieves the best per-
formance among all methods in four experiments of five. So, our
OORP and its extensions are useful for semi-supervised learning
algorithms.

Besides, we compare our algorithms with the new proposed
U-SemiAdaboosts.MH algorithms [28] and some other universum
algorithms on the text clustering task. The experimental results
show that our proposed algorithms conquer the U-SemiAdaboosts.
MH on three experiments of four, and our algorithms have a more
stable performance than U-SemiAdaboosts.MH and other uni-
versum algorithms.

The contributions of this paper can be summarized as follows:

� We impose the column orthogonal constraints on the mapping
operator of ORP and propose the OORP algorithm which gives
better classification performance than that of the original ORP
algorithm.

� We extend our OORP to kernelized version and propose the
KOORP algorithm. An efficient optimization algorithm is de-
signed to solve the KOORP.

� We also extend the OORP to the Laplacian regularized OORP
(LOORP) algorithm.

The remainder of the paper is constructed as follows: we
briefly review the optimal reverse prediction and orthogonal k-
means [24,23] in Section 2. We propose our orthogonal optimal
reverse prediction and its two extensions, kernelized and Lapla-
cian regularized optimal reverse prediction models in Section 3.
Algorithm interpretation and performance evaluation through
experimental results are given in Section 4, and in Section 5 we
compare the computation complexity of our algorithms with the
baseline algorithms and the new proposed U-SemiAdaboosts.MH
[28] as well as other universum algorithms. Finally, we conclude
our work in Section 6.

2. Related work

In this section we will review the optimal reverse prediction
proposed by Xu et al. in [21] and the orthogonal k-means algo-
rithm given in [24,23], which are closely related to our work.

2.1. Optimal reverse prediction (ORP)

Assuming that we are given the input data = ( )( ) ( )X X X,L U in a
× ( + )( ) ( )d N NL U matrix, which contains the labeled data set

∈( ) × ( )
X L d N L

with corresponding label ∈( ) × ( )
Y L k N L

, and the un-

labeled data set ∈( ) × ( )
X U d N U

, where ( )N L denotes the number of
labeled instances, ( )N U denotes the number of unlabeled instances,
d is the dimensionality of instances and k is the number of classes
in the classification problem. For the regression problems k is the
targets' dimensionality. Different from previous clustering model
using the categorical value to present the clustering assignment,
label variable ( )Y L adopts the 1-of-k encoding scheme, each column
in ( )Y L indicates the class label of the corresponding data points in

( )X L . In another words, ∈ { }( ) × ( )
Y 0, 1L k N L

and =⊤Y 1 I, here 1 is a
column vector with entries are all 1 and I is the identity matrix of
appropriate dimension. We adopt ( )Y U to denote the predicted
label matrix corresponding to the unlabeled data, ( )Y U use as same
encoding scheme as ( )Y L . Adopting the 1-of-k encoding scheme for
Y as in [21] has two advantages. First, it is convenient for us to
unify the classification and regression problem with one same
equation. Second, it is feasible for us to introduce the reverse
prediction and unify supervised and unsupervised learning algo-
rithms in a same framework. In ORP learning problem, ( )X L , ( )Y L ,

( )X U are known and ( )Y U is initially unknown.
Conventionally, training a supervised learning model often in-

volves finding parameters W for →( ) ( )f X Y:W
L L that minimizes

some loss function with respect to the targets. Here call W the
forward coefficient. Take the least square model as an example,
training supervised model is equal to minimizing the following
objective function with respect to forward coefficient W:

( )− −
( )

( ) ( ) ⊤ ( ) ( )⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠
⎞
⎠⎟WX Y WX Ymin tr

1W

L L L L

Here, (·)tr denotes the trace of a matrix. We call (1) least square
forward prediction, which means we predict label ( )Y L based on
the input data ( )X L . Conversely, the following equation is called the
least square reverse prediction, which predicts the input data ( )X L

from the target ( )Y L :
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