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a b s t r a c t

We propose a fast algorithm for approximate matching of large graphs. Previous graph matching algo-
rithms suffer from high computational complexity and therefore do not have good scalability. By using a
new doubly stochastic projection, for matching two weighted graphs of n nodes, our algorithm has time
complexity only ( )O n3 per iteration and space complexity ( )O n2 . We proved that our algorithm converges
at a super-logarithmic rate. Experiments on large synthetic and real graphs (over 1000 nodes) were
conducted to evaluate the performance of various algorithms. Results show that due to its fast con-
vergence, our algorithm is more than an order of magnitude faster than the previous state-of-the-art
algorithms, while maintaining comparable accuracy in large graph matching.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Graph matching, aiming to find the optimal correspondences
between the nodes of two graphs, is an important and active topic
of research in computer vision and pattern recognition [1,2]. It has
been extensively applied in various fields including optical char-
acter recognition [3,4], object recognition [5,6], shape matching
[6–8], face recognition [9], feature correspondence [10], point
matching [11], image retrieval [12], video indexing [13], document
processing [14], protein classification [15] and fingerprint identi-
fication [16].

Graph matching is in general a NP-hard discrete optimization
problem. Exact graph matching algorithms include Ullman's
method [17], Nauty [18] and VF2 [19], all of which have ex-
ponential time complexity in the worst cases. To match two
graphs within a reasonable time, one has to look for approximate
solutions. Moreover, due to noise and variability in real world
graphs, the usage of exact graph matching algorithms is very
limited because the exact algorithms are not robust to noise or
variation. The focus of this paper is to design an approximate al-
gorithm for efficiently and robustly matching general large graphs

(e.g. graphs of over 1000 nodes) for computer vision and pattern
recognition purposes.

One approach of approximate graph matching algorithms is
based on tree search [20,21]. Its basic idea is tree search with
backtracking while using heuristics to prune unfruitful paths.
Another approach of approximate graph matching algorithms is
based on continuous relaxation of the discrete problem while
using continuous optimization techniques or heuristics to opti-
mize a matching objective. Classic work include Relaxation La-
beling [22–24], Umeyama's method [25], Graduated Assignment
[26] and Replicator Dynamics [27]. Generally, continuous relaxa-
tion based algorithms have lower computational costs than tree
search based ones [1].

Recent work on graph matching is mainly focused on the
continuous relaxation approach. Most of them suffer from high
computational costs and can only match small graphs. In the ori-
ginal papers of recent graph matching algorithms [10,28–36], the
experiments were done on graphs of only 20–200 nodes. However,
real world images typically contain hundreds to thousands of local
features (e.g. SIFT [37]). Hence, there is a huge gap between the
potential power of graph matching and its practical use.

In this paper, within the continuous relaxation framework, we
propose a novel fast graph matching algorithm called Doubly
Stochastic Projected Fixed-Point (DSPFP), which is capable of
dealing with large graphs of over 1000 nodes in a PC. By using a
recently developed doubly stochastic projection [38], our algo-
rithm has time complexity ( )O n3 per iteration and space com-
plexity ( )O n2 . In addition to its scalability, our algorithm is easy to
implement, robust, and able to match undirected weighted
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attributed graphs of different sizes. We also proved the super-
logarithmic convergence rate of the new projected fixed-point
algorithm, based on the theory of convex projection [39,40]. To the
best of our knowledge, our algorithm is the only iterative graph
matching algorithm with a super-logarithmic convergence guar-
antee. We conduct extensive experiments on benchmark datasets
of large graphs. Due to its fast convergence, DSPFP demonstrated
an order of magnitude of speed-ups compared to previous state-
of-the-art algorithms while maintaining comparable accuracy.

The rest of this paper is organized as follows. In Section 2, we
review previous work on continuous relaxation based graph
matching algorithms. A simplified analysis of performance of dif-
ferent algorithms is given. In Section 3, we present our formula-
tion of the graph matching problem. In Section 4, we introduce our
algorithm, DSPFP, including the derivation, the new and many
other projection methods, and convergence analysis. In Section 5,
we show extensive experiments conducted on various benchmark
datasets in comparison with previous state-of-the-art algorithms
in large graph matching. In Section 6, we study the parameter
sensitivity and limitations of our algorithm. Finally, we give con-
cluding remarks in Section 7.

2. Previous work

In this section, we review and analyze recent state-of-the-art
graph matching algorithms. For a simplified analysis, let us con-
sider the performance of different algorithms in matching two
weighted graphs of n nodes.

The Linear Programming approach [41] has time complexity
( )O n6 per iteration. PATH [33] calls Hungarian method several

times for each iteration, making it slow in practice. Many state-of-
the-art graph matching algorithms including Graduated Assign-
ment (GA) [26], Spectral Matching (SM) [10], Spectral Matching
with Affine Constraint (SMAC) [29], Integer Projected Fixed Point
(IPFP) [30], Reweighted Random Walks Matching (RRWM) [31],
and Max-Pooling Matching (MPM) [36] all aim to solve an Integer
Quadratic Programming problem, which involves a ×n n2 2 com-
patibility matrix. The construction and the computation on the
compatibility matrix takes Ω ( )n4 operations. Note that although it
is claimed that the compatibility matrix can be very sparse so that
sparse matrix techniques can be used for efficient storage and
computation, this is not the case for either weighted graphs or
densely connected unweighted graphs. Moreover, sparse matrix
techniques have overheads despite of their lower time complexity.
Therefore, all the above algorithms with an ×n n2 2 compatibility
matrix do not have good scalability with respect to the size of
graphs. Path-following [33] and Factorized Graph Matching (FGM)
[34] rely on the expensive Frank–Wolfe algorithm [42] or its var-
iants for each iteration. Despite of ( )O n3 per iteration time com-
plexity, these algorithms do not scale well in practice. In their
experiments [33,34], the size of graphs is up to 100 nodes. The
Dual Decomposition (DD) [35] algorithm is even more computa-
tional expensive. In the paper [35], it was reported that the aver-
age runtime of DD was 59.3 s for a set of graphs (CMU house) of
only 30 nodes.

Despite of the accuracy of the above state-of-the-art algo-
rithms, their high computational costs prevent them from large
graph matching.

3. Problem formulation

For simplicity, we first consider graphs of equal sizes. Matching
graphs of different sizes will be studied in Section 4.5. For two
undirected graphs of size n, denote their adjacency matrices

(symmetric) by A and ′A (binary valued for unweighted graphs and
real valued for weighted graphs) and attribute matrices by B and

′B , respectively. Each row of B and ′B is a k-dimensional vector
representing the attributes of a node. The size of A and ′A is ×n n
and the size of B and ′B is ×n k. In [26,43,10,29–31,36], the graph
matching problem is formulated as the following Integer Quad-
ratic Programming (IQP)

λ+ ( )x Wx k xmax
1
2 1

T T

x

= ∈ { } ( )Cx b xs. t. , 0, 1 , 2n2

where W is an ×n n2 2 compatibility matrix, λ is a control parameter,
k is vectorized ′BB T , and C and b are constraint constants enforcing x
is a vectorized permutation matrix. The constant 1

2
is for con-

venience, to be seen later. Under this formulation, algorithms in-
evitably have time complexity Ω ( )n4 since the construction of and
the computation on the ×n n2 2 compatibility matrix require Ω ( )n4

operations. The space complexity is also Ω ( )n4 . The high complexity
overkills their applications in large graph matching. In the experi-
ments of [26,43,29–31,36], graphs are of size up to 100 nodes.

To reduce the high complexity of this formulation, we adopt a
particular compatibility matrix = ⊗ ′W A A , where ⊗is the Kro-
necker product. Due to the property of Kronecker product that for
arbitrary matrices X, Y and Z

( ⊗ ) ( ) = ( ) ( )Z X Y XYZvec vec 3T

where vec is the vectorization of a matrix, the IQP (1) and (2) is
equivalent to

λ( ′) + ( ) ( )X AXA X Kmax
1
2

tr tr , 4
T T

X

= = ∈ { } ( )×X1 1 X 1 1 Xs.t. , , 0, 1 , 5T n n

where (·)tr denotes the matrix trace, K denotes the ×n n matrix
′BB T (see Appendix for derivation), and 1 is a vector with all its

elements equal to one. As a result, we only have to deal with a few
×n n matrices instead of a ×n n2 2 one. This formulation was al-

ready proposed in [44] and used in PATH [33]. See [44] for more
discussion about different formulations of Quadratic Assignment
Problem.

Under this formulation, the time complexity of GA and IPFP can
be reduced to ( )O n3 per iteration directly. However, RRWM and
MPM cannot be reduced in a similar way. RRWM requires an
eliminating operation on the computed W. Without this elim-
inating operation, the matching accuracy of RRWM would de-
crease. And MPM requires a Max-Pooling product of the W and x,
which cannot be reduced to formulation (4) (5).

The formulation (4) and (5) has a clear interpretation in terms
of graph similarity. By a few matrix manipulations (see Appendix),
(4) is equivalent to

λ∥ − ′ ∥ + ∥ − ′ ∥ ( )A XAX B XBmin
1
2

, 6
T

F F
X

2 2

where ∥ ∥. F is the Frobenius matrix norm. In (6), the left term can
be interpreted as dissimilarity between edges and the right term
as dissimilarity between nodes. In all the above formulations, the
problem is NP-hard [44].

4. Algorithm

Under the formulation of (4) and (5), we first introduce the
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