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ABSTRACT

This paper presents a novel method for the challenging task of fine-structured (FS) object segmentation.
The task is formulated as a label propagation problem on an affinity graph. The proposed method has
mainly three advantages. First, to enhance the completeness and connectivity of FS objects, we introduce
a novel neighborhood system combining both local and nonlocal connections, with a robust scheme for
edge weight calculation. Second, appearance models are explicitly incorporated into the energy function
as a term of region cost. This helps to further preserve the connectivity of the fine parts for which the
label information is hard to propagate correctly via neighboring pixels alone. Third, the resulting energy
minimization problem has a closed-form solution with global optimum guaranteed, showing an ad-
vantage over the FS object segmentation methods that suffer from NP-hardness. To enrich the evaluation
of FS object segmentation methods, we created a new challenging data set. It consists of 100 natural
images involving diverse FS objects, with accurately hand-labeled ground truth. Extensive experimental
results demonstrate that our method is effective in handling FS objects and achieves the state-of-the-art

performance.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Object segmentation is undoubtedly one of the most funda-
mental tasks in image processing, pattern recognition and com-
puter vision. The goal of object segmentation is to extract a se-
mantic meaningful foreground object from a given image. Due to
the requirement of prior knowledge about the expected objects,
this goal is often achieved with the help of human-computer in-
teraction, thus interactive techniques have become a trend. The
past decades have witnessed the success of a variety of interactive
image segmentation approaches [1-13] that can produce sa-
tisfactory results in various applications. However, most of them
are only able to handle compact objects well, but they do not apply
to fine-structured (FS) objects like trees and insects. This drawback
leads to an urgent demand of effective solutions to this task in
many practical applications dealing with FS objects, e.g., image
synthesis [14,13] and plant modeling [15,16]. For this reason, the
challenging task of FS object segmentation has naturally attracted
increasing attention and become a crucial research branch.

In addition to the intrinsic difficulties in general object seg-
mentation, FS object segmentation also suffers from its own dif-
ficulties, which mainly lie in two aspects. (1) The commonly-used
boundary length regularization in many approaches [1,2] do not
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apply to FS objects, because their long boundaries violate this
regularization. As a result, the segmented objects often have a bias
towards shorter boundaries and the fine parts tend to be sup-
pressed. This is also known as shrinking bias [17,5,18,7,9,11].
(2) The label information provided by the user-specified interac-
tions is hard to propagate to the unlabeled pixels along the thin
and elongated structures. For this reason, label propagation based
methods [3,19,12] often produce disconnected regions around
each individual interaction, thus are unsuitable to capture the
correct structures of FS objects.

In recent years, there have been some methods focused on
overcoming the above difficulties, and they have achieved quite
promising performance [5,18,7,9,11]. However, most of these
methods have relatively high model and time complexities due to
the NP-hardness in their algorithms. Moreover, in some cases only
approximate optimal solutions can be found [5,7,11], thus the
global optimality can not be guaranteed.

In this work, we focus on addressing the problem of FS object
segmentation, and present an effective method based on label
propagation on a specially constructed affinity graph. The method
is called local and nonlocal neighborhood propagation (LNNP). The
core idea of LNNP is two-fold. (1) We develop a novel neighbor-
hood system by combining both local and nonlocal connections,
with a robust scheme for edge weight calculation. (2) Appearance
models, often absent in label propagation based methods [3,19,12],
are explicitly incorporated into the energy function as a term of
region cost. The segmentation task is finally solved via global
optimization with a closed-form solution. Extensive experimental
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results demonstrate the effectiveness of LNNP in handling FS
objects.
The main contributions of this work are highlighted as follows:

1. We propose to specially construct an affinity graph for label
propagation by combining both local and nonlocal connections.
The label information is thus encouraged to propagate between
both nearby and distant pixels, which largely benefits the pro-
pagation along fine structures.

2. The appearance models are novelly incorporated into a label
propagation based method to provide reasonable labeling pre-
ference for each pixel. This helps to preserve the fine structures
for which the label information is hard to propagate correctly
via pair-wise connections alone.

3. LNNP has a globally optimal closed-form solution, and linear
time complexity with respect to the number of pixels. This ex-
hibits an advantage over the FS object segmentation methods
that suffer from NP-hardness [5,20,7,11].

A shorter version of this paper appeared in [21]. Apart from
extensive qualitative and quantitative evaluations, the main ex-
tensions in the current work are:

1. More comprehensive descriptions and analyses about the al-
gorithm of LNNP are provided.

2. The parameter sensitivity of LNNP is analyzed and verified.

3. Comparative experiments on ten variants of LNNP are con-
ducted to further support the effectiveness of LNNP.

4. A new data set is created and introduced for all the
experiments.

The remainder of this paper is organized as follows. In Section 2
we make a brief review on previous works. The graph model
construction of LNNP is introduced in Section 3. Section 4 presents
the energy function and optimization. The experimental results
are reported in Section 5 and finally some conclusions and dis-
cussions are given in Section 6.

2. Previous works

We now provide a brief review on several representative
methods dealing with FS object segmentation and also some
methods closely related to this work.

2.1. Representative methods for FS object segmentation

Representative methods for FS object segmentation can be
roughly categorized into three classes, namely methods based on
cooperative cuts [7,9], methods based on topological constraints
[5,20,22,11], and methods based on curvature regularization
[18,23,24].

Due to the shrinking bias, the powerful technique Graph Cuts
(GC) [1,25] does not apply to FS objects segmentation [17,5,7,9]. To
address this issue, Jegelka and Bilmes [7] proposed cooperative
cuts. The core idea is to reduce the weights of the edges cut by the
actual object boundaries. In this way, the total cost of a correct
segmentation is reduced, thus the shrinking bias is mitigated.
Unfortunately, the resulting model suffers from NP-hardness, and
only an approximate optimal solution can be found. Later, the
same optimization problem was studied again by Kohli et al. [9].
They reformulated the model in [7] as a higher-order Markov
random field [26], and developed a globally optimal algorithm.
This algorithm proves to the effective, but is quite time-
consuming.

Vicente et al. [5] analyzed the shrinking bias of GC and novelly
proposed to explicitly incorporate connectivity priors as topolo-
gical constraints into this framework. The purpose is to force the
fine parts to be connected to the main body. Later, a variety of
other connectivity prior based methods [20,22,11] are also pro-
posed to address the shrinking bias, and this problem is solved to
different extent correspondingly. However, an inherent drawback
existing in most of these methods is the NP-hardness in optimi-
zation [5,20,11]. Moreover, when tackling natural images, the
methods in [5] and [11] require an extra interaction for each fine
part on a previously segmented object. This is a tedious and even
impossible task for users when there are too many fine parts in an
image or there are too many images to deal with. For this reason,
these two methods [5,11] are unsuitable to be widely applied in
practical applications, despite their satisfactory performance in
terms of connectivity.

Curvature regularization proves to be more suitable than the
commonly-used length regularization for preserving long object
boundaries and fine structures, but leads to complicated optimi-
zation problems [18,23,24]. El-Zehiry and Grady [18] gave a simple
formulation of a curvature regularizer and developed a fast glob-
ally optimal algorithm. One potential limitation of this method lies
in that it only considers specific angular resolutions when mod-
eling the curves. Later, Strandmark et al. [23] attempted to find
fine structures by minimizing curvature using shortest paths. Re-
cently, an efficient algorithm is developed for curvature calculation
[24]. However, these two methods [23,24] have only been shown
effective for either medical image or binary and gray image seg-
mentation, while their effectiveness on natural images have not
been verified yet.

2.2. Label propagation and nonlocal principle

This work is closely related to the methods based on label
propagation [3,12,19] and nonlocal principle [27,28]. In the fol-
lowing, we briefly discuss them.

Methods based on label propagation assume that each pixel
receives the label information from its neighbors according to the
affinities between them. Typically, Random Walks [3] interprets
the propagation as labeling an unlabeled pixel based on the
probability of a random walker starting from it to reach a labeled
pixel. Recently, Casaca et al. [12]| developed a mathematically
simple method called Laplacian Coordinates. It minimizes the label
deviation of each pixel from the weighted average of its neighbors.
However, in these methods, direct label propagation is only al-
lowed between locally neighboring pixels. Connections between
distant pixels inherently belonging to the same object, which are
beneficial for making label propagation more effective, are not
considered. As a result, these methods are prone to fail in FS object
segmentation.

We find that, in the image matting community, this limitation
has already been studied by Chen et al. [19]. They built connec-
tions between nearby pixels in feature space, which might be
faraway on the image grid, and got satisfactory results. However, a
lack of local connections makes it hard to capture the correct local
structures of the objects. Later, Chen et al. [29] extended this work
by integrating local cues into their nonlocal model and improved
the performance. In these two methods, the nonlocal neighbors of
each pixel are found by K-nearest neighbors (KNN) according to
the pixel-wise features. Unfortunately, KNN might wrongly assign
two pixel-wise similar pixels belonging to different objects as
neighbors, thus the connection between them is likely to mislead
the propagation. This issue will be verified in our subsequent
experiments.

In several tasks such as image denoising and matting, there
have been some studies benefitting from the nonlocal principle
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