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a b s t r a c t

In this paper we consider the shape space as the set of smooth simple closed curves in 2 (parameterized
curves), modulo translations, rotations and scale changes. An algorithm to obtain the intrinsic average of
a sample data (set of planar shape realizations), from the identification of the shape space with an in-
finite dimensional Grassmannian is proposed using a gradient descent type algorithm. A simulation
study is carried out to check the performance of the algorithm.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Most methods of scientific research use data which are col-
lected through different techniques. The analysis of these data
using statistical procedures becomes essential for many studies
and, sometimes, to obtain averages of some observed variables
becomes the main goal of the work.

In particular, shape is an important feature of objects and can
be immensely useful in characterizing them for the purpose of
detection, tracking, classification, and recognition [1–3].

In the last years, the definition and study of spaces of planar
shapes has met a large amount of interest. Three major approaches
can be identified in Shape Analysis, based on how the object's
shape is treated in mathematical terms [4]. Shapes can be treated
as sequences of labeled points in the Euclidean space (landmarks)
[5–9], as compact sets on m [4,10,11], or they can be described by
functions representing their contour.

In this paper, the shapes will be represented by smoothly im-
mersed planar curves, which will constitute the boundaries of
compact domains (boundaries of physical objects projected into
the imaging plane). Different works [12,13] have identified,
through isometry, the space of shapes with a given metric with the
Grassmann manifold of 2-planes and infinite dimension. From this
identification, all the characteristic geometric elements of a
manifold (geodesics, distances, curvatures, etc.) have been ob-
tained in the space of planar shapes.

Indeed, an important aspect of shape analysis is to obtain the
empirical mean of several shapes. These empirical means can be
regarded as prototypes in pattern recognition problems. However,
this concept is not trivial. When the shape space M admits the
structure of a Riemannian manifold, two kinds of means have been
studied as Fréchet parameters associated with two types of dis-
tances on M [14,15]. If j is an embedding of M in a Euclidean space,
the mean in the embedding space can be computed, and its pro-
jection to j(M) yields the extrinsic mean shape [16,17]. On the
other hand, a Riemannian distance on M yields the intrinsic mean
set and intrinsic mean shape [15,18]. In this sense, the intrinsic
mean shape can be defined as the set of points that minimize the
mean squared distance as measured along geodesics.

In this paper we consider the intrinsic Fréchet mean in terms of
a finite number of discrete observations rather than in terms of a
probability measure of a distribution on the manifold. It is im-
portant to recognize that a mean on a Riemannian manifold is
defined with respect to a particular Riemannian metric and that
different metrics may generally give rise to different means.

The main contribution of this paper is to propose an algorithm
to obtain the intrinsic average of a sample data (set of planar shape
realizations), from the identification of the shape space with an
infinite dimensional grassmannian, and using a gradient descent
algorithm. That is, we consider a Riemannian metric in the shape
space to obtain the intrinsic mean shape [19,18]. Similar algo-
rithms to the obtained here using Grassmannians can be found in
[20] applied on image and video-based recognition problems.

To reach this contribution, in Section 2 we define the shape
space as a Riemannian manifold and we review some basic con-
cepts about the shape space of geometric curves [21,22].
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Subsequently, the definition of intrinsic sample mean is reviewed
and an algorithm to compute it in the shape space is described in
Section 3. The performance of the algorithm is checked in a si-
mulation study in Section 4. Section 5 shows how the methodol-
ogy is put into practice on several examples. In Section 6 a com-
parative study with other techniques is included and, finally, the
conclusions are stated in Section 7. All the analysis have been
carried out using the software MATLAB1 and R [23].

2. Shape space

Let us define the space of smooth planar closed immersed
curves as

α α= { ∈ ( ) | ′( )| ≠ ∀ ∈ } ( )∞   M C t t, : 0, , 11 2 1

where 1 is the unit circle which is identified with π( ) / 2 and
α′( )t is the usual parametric derivative of the parametric curve α.

M is the space of embedded curves, so curves which differ by a
translation, scaling or reparameterization are different elements of
M.

The pre-shape space of parameterized planar closed curves is
defined as the set of these curves modulo translations, scalings
and rotations; that is,

= ( )
M

Similarities
, 2

with Similarities¼{translations, rotations, scalings} andM as in Eq.
(1).

Finally, the shape space (the shape of geometric curves, i.e.,
curves considered up to similarities and reparameterizations) is
defined as:

=
( ) ( )Diff

.
31

where ( )Diff 1 denotes the group of diffeomorphisms of 1.

2.1. The Riemannian manifold of the pre-shape space

Different Riemannian metrics can be defined on . Following
[18,,21], given a curve α ⟶ : 1 2 in (a representative element of
an equivalence class), the tangent space αT can be identified with
the set of vector fields ⟶ h: 1 2 along α modulo constant vector
fields, and a Riemannian metric can be considered here, given by:

∫( )α
= ̇ ̇

( )
α

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

 
G h k

l
h k ds,

1
, ,

41 2

where 〈· ·〉, 2 is the usual product in 2, ̇h is the derivative with
respect to arc length, s, and α( )l is the length of α.

Let V be the vector space of all ∞C mappings ⟶ f g, : 1 , with
the dot product,

∫〈 〉 = ( ) ( )
π

∞f g f x g x dx,
0

2

and let ( )Gr V2, be the Grassmannian of unoriented 2-dimensional
subspaces of V defined by the orthonormal pairs ( ) ∈ ×e f V V, , i.e.,

( ) = {( ) ∈ × ∥ ∥ = ∥ ∥ = 〈 〉 = }∞ ∞Gr V e f V V e f e f2, , : 1, , 0 .

Let ( )Gr V2,0 be the subset of ( )Gr V2, such that
{ ( ) = ( ) = } = ∅t e t f t/ 0 .

Then, assuming that the planar curves are curves in the com-
plex plane , it has been proved in [21] that the map

∫
Φ

Φ α

( )⟶

( )⟼ (( )) = ( ( ) + ( )) = ( ) ( )

Gr V

e f e f e s if s ds t

: 2,

, ,
1
2

, 5
t

0

0
2

is an isometry, using the natural metric on ( )Gr V2, and the metric

αG on .
It is easy to verify that for α Φ= (( ))e f, defined as in Eq. (5),

α ( ) = ( )0 0, 0 and it is a closed curve because ∥ ∥ = ∥ ∥∞ ∞e f and
〈 〉 =∞e f, 0. Moreover, since ∥ ∥ = ∥ ∥ =∞ ∞e f 1 it can be stated that

α( ) =l 1.
Vice versa, given a curve α ∈ , if θα denotes the tangent-angle

function of α, it can be proved [22] that the inverse of Φ is given
by:
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2.2. Geodesics and distances in and

To compute distances and geodesics in we will use the iso-
metry Φ (Eq. (5)) and the methods used in [21,,24].

Given two closed curves α β ∈, such that α Φ= ( )e f,1 1 and
β Φ= ( )e f,2 2 , with ( ) ( ) ∈ ( )e f e f Gr V, , , 2,1 1 2 2

0 , the distance between
the curves is defined as the distance between the two dimensional
subspacesW1 andW2, generated by { }e f,1 1 and { }e f,2 2 respectively.

The singular value decomposition of the orthogonal projection

p of W1 in W2 gives orthonormal bases {^ ^ }e f,1 1 of W1 and {^ ^ }e f,2 2 of

W2 such that λ(^ ) = ^p e e1 1 2 and λ(^ ) = ^p f f1 2 2, where λ λ≤ ≤0 , 11 2 , ^ ⊥^e f1 2

and ^ ⊥^f e1 2. In fact, λ1 and λ2 are the singular values of the (2�2)-
matrix

=
〈 〉 〈 〉
〈 〈 〈 〉

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟A

e e e f

f e f f

, ,

, ,
.

1 2 1 2

1 2 1 2

If we write λ ψ= cos1 1, λ ψ= cos2 2 then ψ ψ,1 2 are the Jordan
angles, ψ ψ π≤ ≤0 , /21 2 , and according to [24] the geodesic dis-
tance between α Φ= ( )e f,1 1 and β Φ= ( )e f,2 2 is given by

α β ψ ψ( ) = ( ) = + ( )d d W W, , . 71 2 1
2

2
2

An upper bound of this distance is given by α β π( ) ≤d , / 2 .
The geodesic joining the curves α ( )t and β ( )t is defined by [21]

∫γ Φ( ) = ( ( ) ( )) = (( ( ) + ( )) ) ( )α β u e t u f t u e s u f s u ds, , ,
1
2

, i , , 8
t

,
0

2

where

ψ ψ
ψ
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2

Therefore, if α Φ= ( )e f,1 1 and β Φ= ( )e f,2 2 , in order to obtain
the geodesic we have to diagonalize the matrix A by rotating the
curve α by a constant angle ϕα, i.e., the basis ( )e f,1 1 by the angle
ϕα/2; and similarly the curve β by a constant angle ϕβ . The angles ϕα

and ϕβ are given by the equations

ϕ ϕ+ =
〈 〉 + 〈 〉
〈 〉 − 〈 〉α β

⎛
⎝⎜

⎞
⎠⎟

e f f e
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, ,

,1 2 1 2

1 2 1 21 MATLAB is a trademark of The MathWorks Inc.
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