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Abstract

A multi-distorted invariant orthogonal moments, Jacobi–Fourier Moments (JFM), were proposed. The integral kernel of the moments
was composed of radial Jacobi polynomial and angular Fourier complex componential factor. The variation of two parameters in Jacobi
polynomial, � and �, can form various types of orthogonal moments: Legendre–Fourier Moments (� = 1, � = 1); Chebyshev–Fourier
Moments (�= 2, �= 3

2 ); Orthogonal Fourier–Mellin Moments (�= 2, �= 2); Zernike Moments and pseudo-Zernike Moments, and so on.
Therefore, Jacobi–Fourier Moments are generic expressions of orthogonal moments formed by a radial orthogonal polynomial and angular
Fourier complex component factor, providing a common mathematical tool for performance analysis of the orthogonal moments. In the
paper, Jacobi–Fourier Moments were calculated for a deterministic image, and the original image was reconstructed with the moments.
The relationship between Jacobi–Fourier Moments and other orthogonal moments was studied. Theoretical analysis and experimental
investigation were conducted in terms of the description performance and noise sensibility of the JFM.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

There are a lot of literature on distorted-invariant pat-
tern recognition including distorted-invariant descriptor
[1–4] and synthetic filter method [15,16]. Those methods
have solved the problem of some aspect of distorted in-
variant pattern recognition. It is important to acquire a set
of orthogonal and multi-distorted invariant features of an
image for image description and multi-distorted invariant
pattern recognition. Hu [5] derived the moment invariant
from geometrical moments in 1962, which are invariant
for translation, rotation and scaling of the image. Hu’s
moment invariants are not orthogonal themselves, so that
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reconstruction of the image with Hu’s moment invariant is
impossible. The reconstruction of an image is an impor-
tant question on how many moment invariants should be
used and how well they describe the image. According to
the orthogonal theory [6], an image function can be decom-
posed with orthogonal and completed function systems to
form the independent orthogonal image moments, and orig-
inal image can be reconstructed by the weighted superpo-
sition of the moments. Quality of the reconstructed image
and quantity of the orthogonal moments needed for recon-
structing an image can be evaluated by the reconstruction
process.

Teagure [7] first used the Zernike Moments [8] (ZM)
for shape description. The kernel function of Zernike Mo-
ments is Zernike function system which is composed of a
radial Zernike polynomial and an angular Fourier complex
componential factor in polar coordinate system. Zernike
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Moments are orthogonal moments. Sheng et al. proposed
the Orthogonal Fourier–Mellin Moments (OFMM) [9],
which are constructed by the Gram–Schmidt orthogoniza-
tion of a set of monomials of the lowest powers. Other
orthogonal moments, such as Chebyshev–Fourier Moments
(CHFM) [11], Radial-Harmonic-Fourier Moments (RHFM)
[12] was proposed, as well. All the moments are constructed
by the radial orthogonal polynomials and angular Fourier
complex exponential factor to form the orthogonal kernel
function to decompose the image function in polar coor-
dinate system. Except this type of orthogonal moments,
there are some other types of orthogonal moments, such
as Legendre Moments (LM) [10], Discrete Chebyshev
Moments (DCHM) [13] and Complex Moments (CM) [14]
in a Cartesian coordinate system, but they are not rotation
invariant.

Teh et al. commented the description performance and
noise sensibility of various image moments in 1988. They
found that Zernike Moments have a superior performance
over the others [10]. Sheng et al. [9] showed that the OFMM
possesses a better performance over the Zernike Moments
in 1994, especially for the description of small images. Ping
et al. [11] showed that Chebishev–Fourier Moments possess
the same performance as that of the OFMM. Ren et al. [12]
showed that the Radial-Harmonic-Fourier Moments have the
best performance in terms of image reconstruction and noise
sensibility.

Each of the above moments is independent and not as-
sociated with each other. We propose orthogonal moments,
Jacobi–Fourier Moments (JFM), the kernel function of
which consists of radial Jacobi polynomial and angular
Fourier complex exponential factor. The JFM is a generic
orthogonal moment. All orthogonal moments with the ker-
nel function consisted of radial orthogonal polynomial and
angular Fourier exponential factor are special cases of the
JFM. A common formulation of orthogonal moments will
benefit the performance analysis of the moments.

In Section 2, the definition of the JFM is given and the
behavior of Jacobi polynomials near the origin point of the
coordinate system is investigated. In Section 3, the multi-
distortion invariance of JFM is discussed and the JFM is
normalized for scale and intensity distorted invariance. In
Section 4, JFM of English capital alphabet is calculated with
various types of JFM and the original image is reconstructed
with the moments, and the performance of JFM is analyzed
in terms of image reconstruction error and noise sensibil-
ity. The last section is the conclusion. The relationship be-
tween JFM and other orthogonal moments is proved in the
Appendix.

2. JFM

The JFM kernel function set Pnm(r, ϑ) consists of two
separable function sets: the deformed Jacobi polynomial
Jn(�, �, r) to be a radial function and the Fourier exponen-

tial factor exp(jmϑ) to be an angular function:

Pnm(r, ϑ) = Jn(�, �, r) exp(jmϑ), (1)

where n and m are integers. The Jacobi–Fourier kernel
function set is orthogonal in the interior of the unit circle,
0�r �1, 0�ϑ�2�.∫ 2�

0

∫ 1

0
Pnm(r, ϑ)Pkl(r, ϑ)r dr dϑ = �nk�ml , (2)

where �nk�ml are Kronecker symbols and r = 1 is the max-
imum scale of the object in the concrete scene. The radial
function Jn(r) and the Fourier angular kernel exp(jm�) are
separable. The exp(jm�) is orthogonal and the radial func-
tion Jn(�, �, r) should be orthogonal in the interval 0�r �1
too:∫ 1

0
Jn(r, �, �)Jk(r, �, �)r dr = �nk(�, �). (3)

In the orthogonal polynomial theory, the Jacobi polyno-
mial Gn(�, �, r) is defined [6] as

Gn(�, �, r) = n!(� − 1)!
(� + n − 1)!

n∑
s=0

(−1)s

× (� + n + s − 1)!
(n − s)!s!(� + s − 1)! rs . (4)

Jacobi polynomial Gn(�, �, r) is orthogonal in the interval
0�r �1:∫ 1

0
Gn(�, �, r)Gm(�, �, r)w(�, �, r) dr

= bn(�, �)�nm, (5)

where w(�, �, r) is the weight function and bn is the nor-
malization constant:

bn = n![(� − 1)!]2(� − � + n)!
(� + n − 1)!(� + n − 1)!(� + 2n)

, (6)

which are a function of the parameters � and �, and the
general weight function:

w(�, �, r) = (1 − r)�−�r�−1 � − � > − 1, � > 0. (7)

In the above formulas, � and � are real parameters, the
value variation of which will form different Jacobi polyno-
mials. Comparing formulas (3) and (5), we can get the radial
function set:

Jn(�, �, r) =
√

w(�, �, r)

b(�, �)r
Gn(�, �, r). (8)

In the polar coordinate system, an image functionf (r, ϑ)

can be decomposed into the superposition of weighted or-
thogonal components:

f (r, ϑ) =
∞∑

n=0

∞∑
m=−∞

�nmJn(r) exp(jmϑ), (9)
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