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A novel and quick SVM-based multi-class classifier
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Abstract

Use different real positive numbers pi to represent all kinds of pattern categories, after mapping the inputted patterns into a special feature
space by a non-linear mapping, a linear relation between the mapped patterns and numbers pi is assumed, whose bias and coefficients are
undetermined, and the hyper-plane corresponding to zero output of the linear relation is looked as the base hyper-plane. To determine the
pending parameters, an objective function is founded aiming to minimize the difference between the outputs of the patterns belonging to
a same type and the corresponding pi , and to maximize the distance between any two different hyper-planes corresponding to different
pattern types. The objective function is same to that of support vector regression in form, so the coefficients and bias of the linear relation
are calculated by some known methods such as SVMlight approach. Simultaneously, three methods are also given to determine pi , the best
one is to determine them in training process, which has relatively high accuracy. Experiment results of the IRIS data set show that, the
accuracy of this method is better than those of many SVM-based multi-class classifiers, and close to that of DAGSVM (decision-directed
acyclic graph SVM), emphatically, the recognition speed is the highest.
� 2006 Published by Elsevier Ltd on behalf of Pattern Recognition Society.
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1. Introduction

Distinguishing binary different types is easy for SVM,
but how to use SVM to recognize multi-class patterns is also
not perfectly solved [1–17]. Traditionally, in using SVM to
recognize many types, the pattern space is partitioned into
many subspaces, each of which includes only two pattern
types, where an ordinary SVM is adaptable. Originating
from this idea, many techniques, such that one-versus-one
method implemented by max-wins voting (Max–Wins),
one-versus-all method using winner-takes-all (1-v-r) strat-
egy and directed acyclic graph SVM (DAGSVM) are pro-
posed [2,3,5,17]. By an empirical study, Duan et al. [3] call
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PWC_PSVM (one SVM-based multi-class classifier using
Platt’s posterior probabilities together with the pairwise cou-
pling idea of Hastie and Tibshirani.) has superior general-
ization performance over 1-v-r and Max–Wins. Angulo et al.
[1] introduce a “Support Vector Classification-Regression”
machine for K-class classification purposes (K-SVCR), as
the approach adopts 1-versus-1-versus-rest structure during
the decomposing phase, its computation load is very heavy.
Lee et al. [4] design a loss function deliberately tailored to
target the coded class with the maximum conditional proba-
bility for multi-category classification problems. Represent-
ing each pattern category in binary format, and to each bit of
that representation is assigned a conventional SVM, totally
�Log2 K� SVMs are required to classify K classifications,
this is the method named as Mx-ary SVM [6]. The k-SVM
approach needs to construct k two-class discriminants us-
ing k quadratic programmings, the M-SVM approach is
analogical, and requires the solution of a single quadratic
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programming [7]. Ref. [8] introduces an approach involv-
ing conventional SVMs, least-square SVMs and Bayes’ for-
mula, etc., apparently, the way requires much computation.
It must be noted that: at present there exists no theory which
shows that good generalization performance is guaranteed
for SVMs while very high VC dimension would normally
bode ill for generalization performance [9,10].

As for the realization, the SVMlight approach makes large-
scale SVM training more practical [11]. Also, combining
SVM and nearest neighbor classifiers provides a powerful
alternative to SVMs [12], especially in place where com-
putation time and accuracy are primary important. Based
on a measurement of similarity among samples, a heuristic
method for accelerating SVM training is fascinating [13],
the most attractive point of this idea is to make SVM training
fast especially for large-size training data. A hybrid method
of DAGSVM and Max–Wins algorithm is also powerful
[14], whose cumulative recognition rate is as good as the
Max–Wins algorithm, and the execution time is almost as
fast as DAGSVM. The mean field approach can be used in
SVM-based classification problem [15], actually, all cate-
gory approaches based on SVM admit the same dual prob-
lem formulation [16].

2. Objective function of categorization

In a special space, if the distances between the samples
belonging to different types to a certain base are distin-
guishingly different, then the larger the distance difference
between two pattern types is, the easier the two pattern
categories can be distinguished, the better the general per-
formance of the classifier for these two pattern categories
is. The classification base needs to satisfy the following
traits: (1) the base is effective everywhere, i.e., each sample
in this space possesses a distance from the base; (2) the
distance can be definitely calculated, or those of two differ-
ent patterns are comparable when they cannot be definitely
calculated. (3) in order to easily calculate the distance, it is
best that the base is hyper-point, line or plane.

In complex distribution pattern space, seeking a good base
is difficult, even it does not exist completely. Mapping the
patterns from a low-dimension space to a high-dimension
one can make the base take on, or be easily determined.

Let ℵ denote the feature space spanned by all input pat-
terns, R denote a high-dimension space, and the mapping
� : ℵ → R mapped the patterns in ℵ to R. Assume all
samples are categorized into m types, each type possesses
n samples for training, a real positive number pi (pi �= pj

for i �= j , i, j =1, . . . , m) is the object value corresponding
to the ith type samples xij (i = 1, . . . , m, j = 1, . . . , n), the
base � ⊂ R is assumed to be a hyper-plane

�: wTy + b = 0, (1)

where y ∈ R, w is a pending vector whose dimension
number is dependent upon �(xij ), b is a pending number.

In order to make wT�(xij )+ b close to pi , we have follow-
ing constraint set:{wT�(xij ) + b�pi + � + �+

ij , �
+
ij �0,

wT�(xij ) + b�pi − � − �−
ij , �

−
ij �0,

(2)

where � > 0 is the non-sensitive quantity, �+
ij �0 and �−

ij �0
are parameters waiting for extraction. The smaller the pa-
rameters �+

ij and �−
ij are, the less the empirical risk mini-

mization is. The distance from the mapped pattern �(xij ) to
the base � can be given as

dxij
= |wT�(xij ) + b|√

wTw
. (3)

Denote

�dik ≡
∣∣∣∣∣∣

n∑
j=1

dxij
−

n∑
h=1

dxkh

∣∣∣∣∣∣ = 1√
wTw

×
∣∣∣∣∣∣

n∑
j=1

|wT�(xij ) + b| −
n∑

h=1

| wT�(xkh) + b|
∣∣∣∣∣∣ .

(4)

To categorize the mapped patterns easily, it is needed to
make the distance difference �dik (i, k=1, . . . , n) maximal
so as to minimize the structure risk minimization. From
Eqs. (2) and (4), it follows that

�dik � 1√
wTw

n∑
j,h=1

(2� + �+
ij + �−

kh + |pi − pk|), (5)

thus �dik is proportional to 1/
√

wTw, i.e.,

�dik ∝ 1/
√

wTw. (6)

Eq. (2) tells that the smaller the parameters �+
ij and �−

ij are,

the more wT�(xij ) + b is close to pi . From Eq. (5), we can

see, the smaller
√

wTw is, the larger �dik is, the more easily
the two pattern types are categorized. Taking into account
the two sides, we need to solve the following quadratic op-
timization problem: minimize the functional

�(w, �+, �−)

= 1

2
wTw + C

⎛
⎝ m∑

i=1

n∑
j=1

�+
ij +

m∑
i=1

n∑
j=1

�−
ij

⎞
⎠ , (7)

subject to constraints

wT�(xij ) + b�pi + � + �+
ij , �

+
ij �0,

i = 1, . . . , m; j = 1, . . . , n,

wT�(xij ) + b�pi − � − �−
ij , �

−
ij �0,

i = 1, . . . , m; j = 1, . . . , n, (8)

where �+ and �− denote (�+
ij )m×n and (�−

ij )m×n formally,
and C is a predefined control quantity about error of sample
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