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a b s t r a c t

Support vector domain description (SVDD) is a well-known tool for pattern analysis when only positive
examples are reliable. The SVDD model is often fitted by solving a quadratic programming problem,
which is time consuming. This paper attempts to fit SVDD in the primal form directly. However, the
primal objective function of SVDD is not differentiable which prevents the well-behaved gradient based
optimization methods from being applicable. As such, we propose to approximate the primal objective
function of SVDD by a differentiable function, and a conjugate gradient method is applied to minimize
the smoothly approximated objective function. Extensive experiments on pattern classification were
conducted, and compared to the quadratic programming based SVDD, the proposed approach is much
more computationally efficient and yields similar classification performance on these problems.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There exist a range of pattern recognition problems, such as
novelty detection, where the task is to discriminate the pattern of
interest from imposters. In such cases, positive examples for training
are relatively easier to obtain and more reliable. However, although
negative examples are very abundant, it is usually difficult to sample
enough useful negative examples to adequately model the imposters
since they may belong to any class. In this situation, it is often
reasonable to assume positive examples to cluster in a certain way.
Under this assumption, the goal is to accurately describe the class of
positive examples as opposed to the very wide range of negative
examples, which are not of interest.

To this end, Tax and Duin [30–32] developed a support vector
domain description (SVDD) method, which fits a tight hypersphere
in the nonlinearly transformed feature space to enclose most of
the positive examples. Thus, SVDD could be regarded as a
description of the class of interest. Extensive experiments show
that SVDD can correctly identify some negative examples even
though it has not seen any negative example during the training
phase [30–32].

SVDD is, like support vector machine (SVM) [34, chapter 10], a
kernel method, thus inherits all the related advantages of SVM.
Since it was proposed, SVDD has been applied to various applica-
tion problems, including image classification [39], remote sensing
image analysis [2,23,24], medical image analysis [29], machine
diagnostics [33,38], and multi-class classification problems [18,37],

among others. Furthermore, SVDD is a preliminary step for
support vector clustering [3,19,20].

Similar to SVM, the formulation of SVDD leads us to a quadratic
programming problem (see Section 2 for more details). Although
the decomposition techniques [25,26] or sequential minimization
methods [27] could be employed to solve the quadratic program-
ming problem, the training of SVDD has time complexity about
Oðn3Þ (see the end of Section 2 for details), where n is the training
set size. High training cost is undesirable, especially for model
selection and some feature selection methods, where the training
algorithm often needs to run multiple times. Therefore, it is highly
appreciated to develop time-efficient yet accurate enough training
algorithms for SVDD.

As an alternative, we can fit the SVDD model by directly
optimizing the primal objective function, as the similar work for
SVM [9]. However, the primal objective function of SVDD is not
differentiable which prevents gradient based methods [4,36] from
being applicable, although they are easy to implement, and
converge fast to at least a local optimum. As such, we introduce
a smooth approximation to the primal objective function of SVDD,
which is an upper bound of the primal objective function and
converges uniformly to the primal objective function as the
controlling smoothing parameter increases. Then, conjugate gra-
dient method is employed to minimize the proposed smoothly
approximated objective function. We test the proposed approach
on face detection and handwritten digit recognition problems, and
detailed performance comparison on these problems demon-
strates that the proposed smoothly approximated SVDD (SA-
SVDD) often yields testing accuracy very close to that of the
quadratic programming based SVDD (QP-SVDD). However, SA-
SVDD is much more computationally efficient than QP-SVDD.
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The rest of this paper is organized as follows: Section 2 briefly
reviews the formulation of SVDD; Section 3 proposes the smoothly
approximated SVDD model, and a conjugate gradient method is
presented to minimize the smoothed objective function; a brief
computational complexity analysis is also presented in Section 3;
Section 4 compares the classification performances and training time
of the proposed SA-SVDD algorithm to the original QP-SVDD on two
publicly available real-world datasets; finally, Section 5 summarizes
this paper and discusses some future research directions.

2. Support vector domain description

This section briefly reviews the general formulation of support
vector domain description (SVDD) with only positive examples
(Section 2.1) and with both positive and negative examples
(Section 2.2). Refer to [30–32] for more detailed derivations.

2.1. SVDD with positive examples

Given training data fxi; i¼ 1;…;ng with the feature vector
xiARp, SVDD is looking for a hypersphere (in a high dimensional
Hilbert feature space H where the examples have been mapped
through a nonlinear transformation Φ) of radius R40 and center c
with a minimum volume containing most of the data. Therefore,
we have to minimize R2 with constraints JΦðxiÞ�cJ2rR2, for
i¼ 1;…;n. In addition, since the training sample might contain
outliers, we introduce a set of slack variables ξiZ0, as in the
framework of support vector machine (SVM) [34, chapter 10]. The
slack variable ξi measures how much the squared distance from
the ith training example to the center exceeds the radius squared.
Therefore, the slack variable could be understood as a measure of
error. Taking the constraints into account, the problem becomes

min
R;c;ξ

FðR; c; ξÞ ¼ R2þC
Xn
i ¼ 1

ξi; ð1Þ

with constraints

JΦðxiÞ�cJ2rR2þξi; ξiZ0 for i¼ 1;…;n; ð2Þ
where ξ¼ ðξ1;…; ξnÞ0 is the vector of slack variables, and the
parameter C40 controls the tradeoff between the volume of the
hypersphere and the permitted errors.

The Lagrangian dual of the above optimization problem is

min
α

LðαÞ ¼
Xn
i ¼ 1

Xn
j ¼ 1

αiαjKðxi; xjÞ�
Xn
i ¼ 1

αiKðxi; xiÞ; ð3Þ

with constraints

Xn
i ¼ 1

αi ¼ 1; 0rαirC for i¼ 1;…;n; ð4Þ

where α¼ ðα1;…; αnÞ0 with αi being the Lagrangian multiplier for
the ith constraint, and Kðxi; xjÞ ¼ oΦðxiÞ;ΦðxjÞ4 is the kernel
function which satisfies Mercer's condition [34, chapter 10]. From
the Karush–Kuhn–Tucker (KKT) conditions [4, chapter 3] [6,
chapter 5], the center of the hypersphere in the high dimensional
feature space H can be represented in terms of the Lagrangian
multipliers as

c¼
Xn
i ¼ 1

αiΦðxiÞ: ð5Þ

Once the parameters αi's are obtained, the radius R can be
computed from the set of support vectors.

In decision making stage, if the distance from a new example x
is less than the radius R, it is classified as a positive example;
otherwise, it is classified as a negative example. Thus, the decision

rule is

f ðxÞ ¼ sign R2� JΦðxÞ�
Xn
i ¼ 1

αiΦðxiÞJ2
 !

¼ sign 2
Xn
i ¼ 1

αiKðxi; xÞ�Kðx;xÞþb

 !
; ð6Þ

where b¼ R2�Pn
i ¼ 1

Pn
j ¼ 1 αiαjKðxi; xjÞ.

2.2. 2-Class SVDD

If negative examples are available, we could integrate this part
of information to the formulation of SVDD. In this situation, we
would prefer the hypersphere enclosing as many positive exam-
ples as possible and excluding as many negative examples as
possible, and again, we want the volume of the hypersphere to be
as small as possible. Let the training set be fðxi; yiÞ; i¼ 1;2;…;ng,
where yiAfþ1; �1g, with yi ¼ þ1 for positive examples and
yi ¼ �1 for negative examples. As in Section 2.1, we denote the
radius of the hypersphere as R and denote its center as c.

Suppose we impose different penalties for misclassifying posi-
tive and negative examples, then similar to Section 2.1, the
optimization problem could be summarized as

min
R;c;ξ

FðR; c; ξÞ ¼ R2þCþ1

X
i:yi ¼ þ1

ξiþC�1

X
i:yi ¼ �1

ξi ¼ R2þ
Xn
i ¼ 1

Cyiξi;

ð7Þ
where Cþ1 and C�1 are the penalties on mistakenly classifying a
positive or negative example, respectively. As in Section 2.1, ξi is
the slack variable on the ith example, and it should satisfy the
constraints

JΦðxiÞ�cJ2rR2þξi; ξiZ0 for yi ¼ þ1; ð8Þ
and

JΦðxiÞ�cJ2ZR2�ξi; ξiZ0 for yi ¼ �1: ð9Þ
We compactly rewrite the constraints in one equation as

yi JΦðxiÞ�cJ2�R2
� �

rξi; ξiZ0 for i¼ 1;…;n: ð10Þ

By using the Lagrange multiplier method, we get the dual
problem as

min
α

LðαÞ ¼
Xn
i ¼ 1

Xn
j ¼ 1

αiαjyiyjKðxi; xjÞ�
Xn
i ¼ 1

αiyiKðxi; xiÞ; ð11Þ

with constraints

Xn
i ¼ 1

αiyi ¼ 1; 0rαirCyi for i¼ 1;…;n: ð12Þ

By the KKT condition, the center of the hypersphere can be
represented as

c¼
Xn
i ¼ 1

αiyiΦðxiÞ: ð13Þ

Once the parameters αi's are obtained, the radius R can be
computed from the set of support vectors.

Given a new example x, the decision rule is

f ðxÞ ¼ sign R2� JΦðxÞ�
Xn
i ¼ 1

αiyiΦðxiÞJ2
 !

¼ sign 2
Xn
i ¼ 1

αiyiKðxi; xÞ�Kðx; xÞþb

 !
; ð14Þ

where b¼ R2�Pn
i ¼ 1

Pn
j ¼ 1 αiαjyiyjKðxi; xjÞ.

We should notice that minimizing the objective function in Eq.
(7) does not imply strong generalization ability of the resultant
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