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Scalable visual assessment of cluster tendency for large data sets
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Abstract

The problem of determining whether clusters are present in a data set (i.e., assessment of cluster tendency) is an important first step
in cluster analysis. The visual assessment of cluster tendency (VAT) tool has been successful in determining potential cluster structure of
various data sets, but it can be computationally expensive for large data sets. In this article, we present a new scalable, sample-based version
of VAT, which is feasible for large data sets. We include analysis and numerical examples that demonstrate the new scalable VAT algorithm.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, extended versions of fuzzy c-means clustering
algorithms for very large image [1], general object [2] and
relational [3] data sets have been developed. These extended
c-means algorithms have two types of useful application: (1)
to provide faster clustering results when the large data set
is still small enough so that application of a conventional
form of c-means clustering is possible; and (2) to simply
provide (any) clustering results when the data set is so large
that application of a conventional version of c-means is not
practical (either because of the time or space required). A
requirement to run any of the extended (or conventional)
forms of c-means clustering is a good choice for c, the num-
ber of clusters. The purpose of this paper is to describe, an-
alyze and demonstrate a visual method for determining the
number of clusters that can be applied to very large data
sets in a computationally efficient manner. The new method
is a sample-based version of the visual assessment of clus-
ter tendency procedure from Ref. [4]. We begin with some
necessary background.
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Our focus is a type of preliminary data analysis related
to the pattern recognition problem of clustering. Clustering
or cluster analysis is the problem of partitioning a set of
objects O = {o1, . . . , oN } into c self-similar subsets based
on available data and some well-defined measure of (clus-
ter) similarity. In some cases, a geometric description of the
clusters (e.g. by “cluster centers” in data space) is also de-
sired and some clustering methods produce such geometric
descriptors. The type of clusters found is strongly related
to the properties of the mathematical model that underlies
the clustering method. All clustering algorithms will find an
arbitrary (up to 1�c�N ) number of clusters, even if no
“actual” clusters exist. Therefore, a fundamentally important
question to ask before applying any particular (and poten-
tially biasing) clustering algorithm is: Are clusters present
at all?

The problem of determining whether clusters are present
as a step prior to actual clustering is called the assessment of
clustering tendency. Various formal (statistically based) and
informal techniques for tendency assessment are discussed
in Refs. [5,6]. The technique proposed here is visual, and
visual approaches for various data analysis problems have
been widely studied in the last 30 years; [7,8] are standard
sources for many visual techniques. The basis for the new
method for large data sets developed in this article is the
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visual assessment of tendency (VAT) procedure from Ref.
[4]. The VAT approach presents pairwise dissimilarity infor-
mation about the set of objects O={o1, . . . , oN } as a square
digital image with N2 pixels, after the objects are suitably
reordered so that the image is better able to highlight poten-
tial cluster structure. To go further into the VAT approach
requires some additional background on the types of data
typically available to describe the set O = {o1, . . . , oN }.

There are two common data representations of O upon
which clustering can be based. When each object in O is
represented by a (column) vector x in Rs , the set X =
{x1, . . . , xN } ⊂ Rs is called an object data representation
of O. The kth component of the ith feature vector (xki) is the
value of the kth feature (e.g., height, weight, length, etc.) of
the ith object. It is in this data space that practitioners some-
times seek geometrical descriptors (often called prototypes)
of the clusters. Alternatively, when each pair of objects in
O is represented by a relationship between them, then we
have relational data. The most common case of relational
data is when we have (a matrix of) dissimilarity data, say
R = [Rij ], where Rij is the pairwise dissimilarity measure
(usually a distance) d(oi, oj ) between objects oi and oj , for
1� i, j �N . More generally, R can be a matrix of similari-
ties based on a variety of measures [9,10].

The VAT tool is widely applicable because it displays a
reordered form of dissimilarity data, which itself can always
be obtained from the original data for O. If the original
data consists of a matrix of pairwise (symmetric) similarities
S=[Sij ], then dissimilarities can be obtained through several
simple transformations. For example, we can take

Rij = Smax − Sij , (1)

where Smax denotes the largest similarity value. If the orig-
inal data set consists of object data X = {x1, . . . , xN } ⊂
Rs , then Rij can be computed as Rij = ‖xi − xj‖, using
any convenient norm on Rs . If the original data has miss-
ing components (is incomplete), then any existing data im-
putation scheme can be used to “fill in” the missing part
of the data prior to processing. A discussion of various op-
tions for inexpensively handling the missing data is given in
Ref. [4]. The main point here is that the dissimilarity data
needed to apply VAT is available in virtually all numerical
data sets.

The original VAT procedure is stated next. We assume that
R is symmetric, and has nonnegative off-diagonal entries and
zero diagonal entries. In general, the functions, arg max and
arg min, in Steps 2 and 3 are set valued, so that the procedure
selects any of the optimal arguments. The reordering found
by VAT is stored in array P = (P (1), . . . , P (N)).

VAT: Visual Assessment of (Cluster-) Tendency

Input: The user supplies the full N × N matrix of pair-
wise dissimilarities R.

Step 1. Set K = {1, 2, . . . , N}.
Select (i, j) ∈ arg min

p∈K,q∈K
{Rpq}.

Set P(1)= i; I = {i}; and J =K − {i}.

Fig. 1. (a) Object data. (b) Image for original R. (c) Image for VAT-
ordered R̃.

Step 2. For t = 2, . . . , N :
Select (i, j) ∈ arg min

p∈I,q∈J
{Rpq}.

Set P(t)=j ; Replace I ← I ∪{j} and
J ← J − {j}.

Next t.
Step 3. Form the ordered dissimilarity matrix R̃=[R̃ij ]=

[RP(i)P (j)], for 1� i, j �N .
Step 4. Display R̃ as an intensity image, scaled so that

max {R̃ij } corresponds to white and 0 corresponds
to black.

The VAT ordering algorithm can be implemented in
O(N2) time complexity and is similar to Prim’s algorithm
for finding a minimal spanning tree (MST) of a weighted
graph (see, for example [11] for a description of Prim’s
algorithm). The main differences between VAT and Prim’s
algorithm are that: (i) we are not interested in representing
the MST, but only in finding the order in which the vertices
are added as it is grown; and (ii), we specify a method
for choosing the initial vertex that depends on the maxi-
mum edge weight in the underlying complete graph. (This
choice of initial vertex gives nicer images, by avoiding a
phenomenon known as “zigzagging”, which is discussed in
Ref. [4].) The permuted indices of the N objects are stored
in the array P. Note that distances in R̃ are not recomputed;
instead, we simply rearrange the rows (and columns) of R
to construct R̃.

From Ref. [4], we repeat a small example in Fig. 1 to show
the reader how well-separated cluster structure is indicated
as dark diagonal blocks in the intensity image display of
the VAT-ordered R̃. Fig. 1(a) gives a scatter plot of a small
data set in R2. A display of the relational data matrix R =
[rij ] = [‖xi − xj‖] using the Euclidean norm to convert
X to R in Fig. 1(b) does not indicate the structure of the
data set. After the relational matrix R is reordered by VAT
and displayed as R̃ in Fig. 1(c), the structure is apparent.
We see c = 4 clusters in view 1(c), indicated by the four
dark blocks along the main diagonal. Moreover, the size
of each block corresponds directly to the number of points
in each cluster. Notice the singleton! Certainly, VAT is not
needed when a scatter plot such as Fig. 1(a) is possible,
but we use this simple example of object data in R2 to
help the reader correlate (visual) spatial clusters with VAT
images.
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