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Abstract

This study promotes the use of statistical methods in specific classification tasks since statistical methods have certain advantages which
advocate their use in pattern recognition. One central problem in statistical methods is estimation of class conditional probability density
functions based on examples in a training set. In this study maximum likelihood estimation methods for Gaussian mixture models are
reviewed and discussed from a practical point of view. In addition, good practices for utilizing probability densities in feature classification
and selection are discussed for Bayesian and, more importantly, for non-Bayesian tasks. As a result, the use of confidence information in
the classification is proposed and a method for confidence estimation is presented. The propositions are tested experimentally.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, black box and gray box pattern recognition (PR)
and feature classification methods have proved to be very
powerful and methods such as multi-layer perceptron neural
networks [1] and support vector machines [2] are frequently
applied with a great success. Furthermore, other novel meth-
ods seem to embed feature selection into a classifier syn-
thesis as, for example, in the AdaBoost boosting algorithm
[3]. These powerful methods are also state-of-the-art meth-
ods in practice and it is justifiable to ask whether structural
and statistical PR approaches are still relevant.

Drawbacks in black and gray box PR methods are often
their incapability to provide confidence information for their
decision or difficulty in incorporating risk and cost models
into the recognition process. In many applications it is not
sufficient just to assign one predefined class to new obser-
vations; for example, in face detection facial evidence, such

∗ Corresponding author. Tel.: +358 5 6212844; fax: +358 5 6212899.
E-mail addresses: paalanen@lut.fi (P. Paalanen), jkamarai@lut.fi,

Joni.Kamarainen@lut.fi (J.-K. Kamarainen), ilonen@lut.fi (J. Ilonen),
kalviai@lut.fi (H. Kälviäinen).

0031-3203/$30.00 � 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2006.01.005

as eye centers and nostrils, should be detected from a scene
and provided to the next processing level in ranked order
(best candidates first) in order to perform detection compu-
tationally efficiently [4,5]. Gray box methods may include
the confidence information as an ad hoc solution. Statistical
methods, on the other hand, usually provide the informa-
tion in an interpretable form along with sufficient mathe-
matical foundations. Statistical methods thus provide some
advantages over black box methods; the decision making is
based on an interpretable basis from which the most proba-
ble or lowest risk (expected cost) option can be chosen (e.g.
Bayesian decision making [6]) and different observations
can be compared based on their statistical properties.

In a typical PR problem, features from known observa-
tions, a training set, are provided and necessary statistics
must be established for recognition of unknown observa-
tions and estimation of confidence. A class of patterns is
typically represented as a probability density function (pdf)
of features. Selection of proper features is a distinct and
application specific problem, but as a more general consid-
eration, finding a proper pdf estimate has a crucial impact
on successful recognition. Typically, the form of the pdf is
somehow restricted and the search is reduced to a problem of
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fitting the restricted model to observed features. Often al-
ready simple models such as a single Gaussian distribution
(normal distributed random variable) can efficiently repre-
sent patterns but a more general model, such as a finite mix-
ture model, must be used to approximate more complex pdfs;
arbitrarily complex probability density functions can be ap-
proximated using finite mixture models. The finite mixture
representation is a natural choice for certain kinds of ob-
servations: observations which are produced by a randomly
selected source from a set of alternative sources belonging
to a same main class. This kind of task occurs when object
categories are identified instead of object classes. For exam-
ple, features from eye centers are partitioned into closed eye
and open eye, or Caucasian and Asian eye sub-classes. The
problem arises how probability densities should be approx-
imated with finite mixture models and how the model pa-
rameters should be estimated. Equally important is to define
correct practices for the use of pdfs in pattern recognition
and classification tasks.

In this study Gaussian mixture model (GMM) pdfs are
studied as finite mixture models. The two main consider-
ations with the GMM are estimation of number of Gaus-
sian components and robustness of the algorithm to tolerate
singularities occurring due to a small sample size. It can-
not be assumed that the user knows all necessary details,
and thus, the estimation should be unsupervised and utilize
existing approximation and statistical theories. Several es-
timation methods have been proposed in literature and the
most prominent ones are experimentally evaluated in this
study. The methods are extended to Cn since complex do-
main features, such as Gabor filter responses, seem to be
convenient for some applications [4,7]. Correct classification
practices are analyzed and defined based on problem char-
acteristics: (i) classifying an unknown observation into one
of predefined classes, (ii) finding best candidates from a set
of observations, (iii) deciding class association to a single
known class when other classes are unknown or their sam-
ples are insufficient, and (iv) concluding what useful statis-
tical information should be provided to the next processing
level. Finally, by providing implementations [8] for the de-
scribed methods, we aim to encourage good practices when
using GMM pdfs for representation and discrimination of
patterns.

2. Gaussian mixture probability density function

Finite mixture models and their typical parameter estima-
tion methods can approximate a wide variety of pdfs and
are thus attractive solutions for cases where simple function
forms, such as a single normal distribution, fail. However,
from a practical point of view it is often sound to form the
mixture using one predefined distribution type, a basic dis-
tribution. Generally the basic distribution function can be of
any type but the multivariate normal distribution, the Gaus-
sian distribution, is undoubtedly one of the most well-known

and useful distributions in statistics, playing a predominant
role in many areas [9]. For example, in multivariate anal-
ysis most of the existing inference procedures have been
developed under the assumption of normality and in linear
model problems the error vector is often assumed to be nor-
mally distributed. The multivariate normal distribution also
appears in multiple comparisons, in studies of the depen-
dence of random variables, and in many other related fields.
If no prior knowledge of a pdf of a phenomenon exists, only
a general model can be used and the Gaussian distribution is
a good candidate. For a more detailed discussion on the the-
ory, properties and analytical results of multivariate normal
distributions we refer to Ref. [9].

2.1. Multivariate normal distribution

A non-singular multivariate normal distribution of a D
dimensional random variable X �→ x can be defined as

X ∼N(x;µ, �)

= 1

(2�)D/2|�|1/2
exp

[
−1

2
(x− µ)T�−1(x− µ)

]
, (1)

where µ is the mean vector and � the covariance matrix
of the normally distributed random variable X. Multivariate
Gaussian pdfs belong to the class of elliptically contoured
distributions, and thus, for example, equiprobability surfaces
of the Gaussian are µ-centered hyperellipsoids [9].

The Gaussian distribution in Eq. (1) can be used to de-
scribe a pdf of a real valued random vector (x ∈ RD). A
similar form can be derived for complex random vectors
(x ∈ CD) as [10]

NC(x;µ, �)= 1

�D|�| exp[−(x− µ)∗�−1(x− µ)], (2)

where ∗ denotes the adjoint matrix (transpose and complex
conjugate).

2.2. Finite mixture model

Despite the fact that multivariate Gaussian pdfs have been
successfully used to represent features and discriminate be-
tween different classes in many practical problems (e.g.,
Refs. [11,12]), the assumption of single component leads to
strict requirements for characteristics of the phenomenon: a
single basic class which smoothly varies around the class
mean. The most significant problem is not typically the
smooth behavior but the assumption of unimodality. For
multimodally distributed features the unimodality assump-
tion may cause an intolerable error in the estimated pdf and
consequently in the discrimination between classes. Errors
are not only in the limited representation power but also in
completely wrong interpretations (e.g. a class represented
by two Gaussian distributions and another class between
them). In object recognition this can be the case for such
a simple thing as a human eye, which is actually an object
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