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(2D)2LDA: An efficient approach for face recognition
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Abstract

Although 2DLDA algorithm obtains higher recognition accuracy, a vital unresolved problem of 2DLDA is that it needs huge feature
matrix for the task of face recognition. To overcome this problem, this paper presents an efficient approach for face image feature extraction,
namely, (2D)2LDA method. Experimental results on ORL and Yale database show that the proposed method obtains good recognition
accuracy despite having less number of coefficients.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Linear discriminant analysis (LDA) is a well-known fea-
ture extraction and data representation technique widely
used in the areas of pattern recognition for feature extraction
and dimension reduction. The objective of LDA is to find
the optimal projection so that the ratio of the determinants
of the between-class and the within-class scatter matrices of
the projected samples reaches its maximum. However, con-
catenating 2D matrices into 1D vectors leads to very high
dimensional nature of image vector, where it is difficult to
evaluate the scatter matrices accurately due to its large size
and the relatively small number of training samples. Fur-
thermore, the within-class scatter matrix is always singular,
making the direct implementation of LDA algorithm an in-
tractable task.

To overcome these problems, a new technique called
2DLDA [1] was recently proposed, which directly com-
putes eigenvectors of the so called scatter matrices without
matrix-to-vector conversion. Because the size of the scatter
matrices is equal to the width of the images, which is quite
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small compared to the size of the scatter matrices in LDA,
2DLDA evaluates the scatter matrices more accurately and
computes the corresponding eigen vectors more efficiently.
It was reported in Ref. [1] that the recognition accuracy on
several databases was higher using 2DLDA than other PCA
and LDA-based algorithms.

However, the main drawback of 2DLDA is that it needs
more coefficients for image representation than conventional
PCA- and LDA-based schemes. For an image size of 112 ×
92, the commonly used image size in face recognition, the
number of coefficients used by 2DLDA for classification is
112 × d, where d is set to no less than 5 for satisfactory
accuracy.

In this paper, we first indicate that 2DLDA is es-
sentially working in the row-direction of images, and
then propose an alternative 2DLDA which works in the
column direction of images. By simultaneously com-
bining row and column directions, we develop two-
directional 2DLDA, i.e. (2D)2LDA, for efficient represen-
tation and recognition. Experimental results on ORL and
Yale database shows that the proposed method obtains
same or even better recognition accuracy than 2DLDA,
while the number of coefficients needed by the former
for image representation is much smaller than that of
the latter.
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2. Overview of 2DLDA approach

2DLDA is an effective feature extraction and discrimina-
tion approach [1] in face recognition. Formally, it can briefly
be formulated as follows: Suppose {Ak}Nk=1 are the train-
ing images, which contain C classes, and the ith class Ci

has ni samples (
∑C

i=1 ni = N). 2DLDA attempts to seek
a set of optimal discriminating vectors to form a transform
Xd ={x1, x2, . . . , xd} by maximizing the 2D Fisher criterion
denoted as

J (X) = XTGbX

XTGwX
. (1)

In Eq. (1), T denotes matrix transpose, Gb and Gw, respec-
tively, are between-class and within-class scatter matrices:

Gb = 1

N

C∑
i=1

ni(Ai − A)T(Ai − A), (2)

Gw = 1

N

C∑
i=1

∑
j∈Ci

(Aj − Ai)
T(Aj − Ai), (3)

Ai, A denote the means of ith class and the whole train-
ing set, respectively. Aj is the j th image in the class Ci .
The goal of 2DLDA scheme is to find the optimal discrimi-
nating vectors Xopt in order to maximize J (X). Obviously,
the optimal discrimination vectors Xopt are the eigenvector
corresponding to the dominant eigenvalues of eigenstructure
G−1

w Gb. It has been proved that the optimal value for the
discriminating vectors Xopt is composed of the orthonormal
eigenvectors x1, x2, . . . , xd of G−1

w Gb corresponding to the
d largest eigenvalues. Now, given an image Am×n, all the
projections of the image matrix in the d-directions make up
md-dimensional vector, which is the 2DLDA feature vector.

2.1. Proposed alternative-2DLDA

Let Ak =[(A(1)
k )T, (A

(2)
k )T, . . . , (A

(m)
k )T]T, Ai =[(A(1)

i )T,

(A
(2 )

i )T, . . . , (A
(m)

i )T ]T, A = [(A(1)
)T, (A

(2)
)T, . . . ,

(A
(m)

)T]T, where A
(j)
k , A

(j)

i , A
(j)

denote the j th row vec-
tors of Ak , Ai and A, respectively. Then Eqs. (2) and (3)
can be written as:

Gb = 1

N

C∑
i=1

ni

m∑
j=1

(A
(j)

i − A
(j)

)T(A
(j)

i − A
(j)

), (4)

Gw = 1

N

C∑
i=1

∑
k∈Ci

m∑
j=1

(A
(j)
k − A

(j)

k )T(A
(j)
k − A

(j)

k ). (5)

Eq. (5) reveals that the scatter matrix Gw can be obtained
from the outer product of row vectors of images, assuming
the training images have zero mean [2]. For this reason,

we claim that original 2DLDA is working in the row di-
rection of images. Apparently, a natural extension is to use
the outer product between column vectors of images to con-
struct Gb and Gw.

Let

Ak = [(A(1)
k ), (A

(2)
k ), . . . , (A

(n)
k )],

Ai = [(A(1)

i ), (A
(2)

i ), . . . , (A
(n)

i )],
A = [(A(1)

), (A
(2)

), . . . , (A
(n)

)],

where A
(j)
k , A

(j)

i , A
(j)

, respectively denote the j th column
vectors of Ak , Ai andA.

Let Z denotes an m-dimensional unitary column vector.
Projecting the image matrix Am×n onto Z yields a q × n

feature matrix, i.e, B=ZTA. Similar to Eq. (1), the following
criterion is adopted to find the optimal projection vector Z

and is given by J (Z)= trace(Sz
b)/trace(Sz

w), where Sz
b and

Sz
w are, respectively, given by 1/N

∑C
i=1ni(y

i −y)(yi −y)T

and 1/N
∑C

i=1
∑

j∈Ci
(yj − yi)(yj − yi)T. Here y and yi ,

respectively, denote the global and the mean vector of ith
class in the projection space.

It is easy to verify that trace(Sz
b) = Z · G · ZT and

trace(Sz
w)=Z ·Gw ·ZT where Gb and Gw are now given as

Gb = 1

N

C∑
i=1

ni

m∑
j=1

(A
(j)

i − A
(j)

)(A
(j)

i − A
(j)

)T, (6)

Gw = 1

N

C∑
i=1

∑
k∈Ci

m∑
j=1

(A
(j)
k − A

(j)

k )(A
(j)
k − A

(j)

k )T. (7)

Similarly, the optimal projection matrix Zopt=[z1, z2, . . . , zq ]
can be obtained by computing the orthonormal eigenvec-
tors of G−1

w Gb corresponding to the q largest eigenvalues
thereby maximizing J (Z).

2.2. Proposed (2D)2 LDA method: 2-directional
2-dimensional LDA

We reasoned in Section 2.1 that 2DLDA works in the
rowwise direction reflecting the information between row of
images to learn an optimal matrix X from a set of training
images, and then project an m×n image A onto X, yielding
m by d matrix, i.e. Ym×d =Am×n ·Xn×d . Similarly, the alter-
native 2DLDA learns optimal projection matrix Z reflecting
information between columns of images and then projects A

onto Z, yielding a q by n matrix, i.e. Bq×n =ZT
m×q ·Am×n.

Suppose we have obtained the projection matrices X (as
in Section 2) and Z (as in Section 2.1), projecting the m by
n image A onto X and Z simultaneously, yielding a q by d

matrix C,

C = ZT · A · X. (8)
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